

AFRL-RI-RS-TR-2008-273
Final Technical Report
October 2008

EVALUATING SPARSE LINEAR SYSTEM
SOLVERS ON SCALABLE PARALLEL
ARCHITECTURES

Purdue University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. AD53

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2008-273 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

CHRISTOPHER FLYNN EDWARD J. JONES
Work Unit Manager Deputy Chief, Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

OCT 08
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Aug 06 – May 08
4. TITLE AND SUBTITLE

EVALUATING SPARSE LINEAR SYSTEM SOLVERS ON SCALABLE
PARALLEL ARCHITECTURES

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-06-1-0233

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Ananth Grama, Murat Manguoglu, Mehmet Koyuturk, Maxim Naumov and
Ahmed Sameh

5d. PROJECT NUMBER
AD53

5e. TASK NUMBER
PR

5f. WORK UNIT NUMBER
DU

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
PRIME SUB
Purdue University Case Western Reserve University
Dept of Computer Science Dept of EE and Computer Science
West Lafayette IN 47907-2024 Cleveland OH 44106

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/RITB
3701 North Fairfax Drive 525 Brooks Rd
Arlington, VA 22203-1714 Rome, NY 13441-4515

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2008-273

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW 08-0519

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes in detail studies developing and evaluating sparse linear systems on scalable architectures, with emphasis on
preconditioned iterative solvers. The study was motivated primarily by the lack of robustness of Krylov subspace iterative schemes
with generic, “black-box, pre-conditioners such as approximate (or incomplete) LU-factorizations. In this report the authors
advocate the use of banded pre-conditioners after suitable reordering of the sparse linear systems. The choice of the reordering
scheme is based on: 1) minimizing the bandwidth, and 2) bringing as many of the largest elements of the coefficient matrix as
possible to a “narrow” central band.

15. SUBJECT TERMS
Sparse linear systems solvers, scalability, parallel architectures

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

104

19a. NAME OF RESPONSIBLE PERSON
Christopher Flynn

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Contents

1 Highly Scalable Linear Solvers: The SPIKE Algorithm 1
1.1 Introduction . 1
1.2 The Spike algorithm . 2

1.2.1 Preprocessing stage . 2
1.2.2 Factorization . 3
1.2.3 The Post-processing stage 4

1.3 SPIKE: a poly-algorithm . 5
1.4 The non-diagonally dominant case 6

1.4.1 Factorization step . 6
1.4.2 The Recursive SPIKE algorithm 7
1.4.3 Additional remarks . 11

1.5 The diagonally dominant case . 11
1.5.1 The truncated SPIKE algorithm 12
1.5.2 The truncated factorization stage 12

1.6 Performance results and comparisons with ScaLapack 13
1.6.1 SPIKE: performance on 32 processors 13
1.6.2 Scalability . 17

2 A Parallel Framework for Solving Banded Linear Systems that
are Sparse Within the Band 25
2.1 Introduction . 25
2.2 A sparse SPIKE system solver using multi-level parallelism . . . 26
2.3 Numerical experiments . 27

3 Weighted Matrix Ordering and Banded Preconditioners for
Non-symmetric Linear System Solvers 29
3.1 Introduction . 29
3.2 Background and Related Work 30

3.2.1 Banded preconditioners 31
3.3 Weighted Bandwidth Reduction 31

3.3.1 Non-symmetric reordering 31
3.3.2 Symmetric reordering . 32
3.3.3 Summary of banded solvers 35

3.4 Numerical Experiments . 35

i

3.4.1 Experimental setup and test problems 35
3.4.2 Comparative analysis . 38

4 A Tearing-based Hybrid Parallel Banded Linear System Solver 49
4.1 Introduction . 49
4.2 Partitioning . 50
4.3 The Balance System . 52

4.3.1 The symmetric positive definite case 52
4.3.2 The non-symmetric case 54

4.4 The Hybrid Solver of the Balance System 59
4.5 Preconditioning the balance system 60
4.6 Numerical Experiments . 60
4.7 Pseudocode . 66

5 Scalability of Parallel Programs 67
5.1 Introduction . 67
5.2 Metrics of Parallel Performance 69
5.3 Metrics for Scalability Analysis 71

5.3.1 Scaling characteristics of parallel programs 72
5.3.2 The isoefficiency metric of scalability 73
5.3.3 Cost-optimality and the isoefficiency function 78
5.3.4 A lower bound on the isoefficiency function 79
5.3.5 The degree of concurrency and the isoefficiency function . 79
5.3.6 Scaling properties and parallel benchmarks 80
5.3.7 Other scalability analysis metrics 80

5.4 Heterogeneous Composition of Applications 83

6 Summary and Conclusion 85

ii

List of Figures

1.1 Partitioning of the matrix A and the RHS F, with p = 4. The size
of each partition j is nj , and the size of the coupling off-diagonal
blocks Bj and Cj of the original matrix, is m × m. 2

1.2 The spike factorization defined by A = DS, where D is a block-
diagonal matrix with 4 partitions. A new linear system SX = G
needs, then, to be solved, where G is the modified right hand side
(DG) = F)). An independent reduced system, of much smaller
size, can be extracted from those few rows of S immediately above
and below each partitioning line. 3

1.3 Speed improvement for Test 1 of Recursive SPIKE, with partial
pivoting, over ScaLapack for non-diagonally dominant systems. . 15

1.4 Speed improvement over ScaLapack for Recursive SPIKE without
pivoting for non-diagonally dominant matrices. No “zero-pivot”
is detected in Test 2a, while in Test 2b outer-iterations are needed
after diagonal boosting. In Test 2b, one half iteration of BiCGstab
is necessary to satisfy the convergence criterion: r < 10−8 . . . 16

1.5 Speed improvement over ScaLapack for the Truncated SPIKE al-
gorithm for diagonally dominant systems. Test 3a uses the LU-
UL strategy, while the Test 3b requires outer iterations because of
the approximation used to compute W t

j in the factorization stage. 17
1.6 Factorization times (on log scale) taken by ScaLapack, Recursive

SPIKE with pivoting, and Recursive SPIKE without pivoting for
non-diagonally dominant systems. 21

1.7 Solve times (on log scale) taken by ScaLapack, Recursive SPIKE
with pivoting, and Recursive SPIKE without pivoting for non-
diagonally dominant systems. 22

1.8 Time for the factorization stage (on log scale) for ScaLapack,
and the Truncated SPIKE using LU-UL strategy, for diagonally
dominant systems. 23

1.9 Time for the solve stage (on log scale) for ScaLapack, and the
Truncated SPIKE using LU-UL strategy, for diagonally dominant
systems. 24

iii

2.1 SPIKE with two-level parallelism using PARDISO within each
node. The machine used for the illustration, has 4 dual-processor
nodes. 26

3.1 Comparison of performance of WSO banded preconditioner with
ILUT(fmax, 10−1) . 40

3.2 Comparison of performance of WSO banded preconditioner with
ILUT(fmax, 10−3) . 41

3.3 Comparison of performance of WSO banded preconditioner with
ILUT(k, 0.0) . 42

3.4 Residual history of WSO banded preconditioner for problem
2D 54019 HIGHK . 43

3.5 Residual history of WSO banded preconditioner for problem Appu 43
3.6 Residual history of WSO banded preconditioner for problem

ASIC 680k . 44
3.7 Residual history of WSO banded preconditioner for problem BUN-

DLE1 . 44
3.8 Residual history of WSO banded preconditioner for problem DC1 45
3.9 Residual history of WSO banded preconditioner for problem

DW8192 . 45
3.10 Residual history of WSO banded preconditioner for problem

FEM 3D THERMAL . 46
3.11 Residual history of WSO banded preconditioner for problem FI-

NAN512 . 46
3.12 Residual history of WSO banded preconditioner for problem FP . 47
3.13 Residual history of WSO banded preconditioner for problem H2O 47
3.14 Residual history of WSO banded preconditioner for problem

MSC23052 . 48
3.15 Residual history of WSO banded preconditioner for problem

RAEFSKY4 . 48

4.1 Distribution of a banded linear system across various processors. 61
4.2 Achieved residual for different methods and stopping criteria on

G3 circuit . 62
4.3 Achieved residual for different methods and stopping criteria on

ASIC 680k . 62
4.4 Performance on 8 processors with different stopping criteria on

G3 circuit . 63
4.5 Performance on 8 processors for different stopping criteria on

ASIC 680k . 63
4.6 Performance of CG (stopping criteria<10E-10), DDCG and

ScaLapack on G3 circuit . 64
4.7 Scalability of DDCG on G3 circuit for 32 processors. 64
4.8 Scalability of DDBiCGStab on ASIC 680k for 32 processors. . . . 65

iv

5.1 A comparison of the speedups obtained by the binary-exchange, 2-
D transpose and 3-D transpose algorithms on 64 cores with tc =
2ns, tw = 4ns, ts = 25ns, and th = 2ns. 72

5.2 Variation of efficiency: (a) as the number of processing elements
is in creased for a given problem size; and (b) as the problem
size is increased for a given number of processing elements. The
phenomenon illustrated in graph (b) is not common to all parallel
systems. 74

v

List of Tables

1.1 List of various tests associated with various options for the
SPIKE algorithm. 14

1.2 List of various tests associated with various options for the
SPIKE algorithm augmented with factorization and solve times
(in seconds) obtained for b = 401. ScaLapack times are also
given for comparisons. 18

1.3 Test 1- Simulation times and relative speed improvement (λ) vs
ScaLapack, obtained with the Recursive SPIKE with partial piv-
oting for non-diagonally dominant systems. 19

1.4 Test 2a- Simulation times and relative speed improvement (λ)
w.r.t. ScaLapack, obtained with the Recursive SPIKE without
pivoting where no-outer iteration is needed, for non-diagonally
dominant systems. 19

1.5 Test 2b- Simulation times and relative speed improvement (λ)
w.r.t. ScaLapack, obtained with the Recursive SPIKE without piv-
oting where outer iterations are needed, for non-diagonally dom-
inant systems. 20

1.6 Test 3a- Simulation times and relative speed improvement (λ)
w.r.t. ScaLapack, obtained with the Truncated SPIKE with LU-
UL strategy, for diagonally dominant systems. 20

1.7 Test 3b- Simulation times and relative speed improvement (λ)
w.r.t. ScaLapack, obtained with the Truncated SPIKE with LU
factorization and an approximation strategy, for diagonally dom-
inant systems. 21

2.1 Test (a). SPIKE runs using PARDISO on 2 and 4 nodes and
Truncated SPIKE on 8 processors, with Reordering, Factoriza-
tion, Solve, and Total times in seconds. 27

2.2 Test (b). SPIKE runs using PARDISO on 2 and 4 nodes, with
Reordering, Factorization, Solve, and Total times in seconds. . . 27

3.1 Description of Test Problems . 36
3.2 Properties of Test Properties . 36
3.3 Values of fillin f and bandwidth k for the test problems 38

vi

3.4 Number of nonzeros in matrix L + U, for various ILUT precon-
ditioners . 39

3.5 Comparison of ILUT,ILUTI, and WSO: Number of Itera-
tions(Total Solve Time) . 40

4.1 Description of test matrices . 61

vii

ABSTRACT

This report describes in detail our studies in developing and evaluating sparse
linear systems on scalable architectures, with emphasis on preconditioned iter-
ative solvers. The study was motivated primarily by the lack of robustness of
Krylov subspace iterative schemes with generic, “black-box”, preconditioners
such as approximate (or incomplete) LU-factorizations as well as their limited
scalability to large-scale parallel platforms. In this report we advocate the use
of banded preconditioners after suitable reordering of the sparse linear systems.
The choice of the reordering scheme is based on: (i) minimizing the bandwidth,
and (ii) bringing as many of the largest elements of the coefficient matrix as
possible to a “narrow” central band. Next, we extract a prominent central
band and use it as a preconditioner. In Chapters 1 and 2 we develop a paral-
lel algorithm, “SPIKE”, for solving banded systems that are considered dense
within the band. We also show that our solver is highly scalable and superior
in performance to the banded system solver in the widely available parallel li-
brary ScaLapack. Also, we show how ”SPIKE” can be used in conjunction with
a direct sparse system solver such as “Pardiso”, which is a subroutine in In-
tel’s Math Kernel Library (MKL) for handling banded systems that are sparse
within the band. In Chapter 3, we present a weighted reordering scheme that
enables the extraction of effective banded preconditioners. We also show that
the time consumed by such a reordering scheme is a small fraction of the total
time needed to solve very large sparse systems using preconditioned BiCGstab
or GMRES (two prominent members of the Krylov subspace methods). The
effectiveness of our strategy is demonstrated on a wide collection of publicly
available sparse linear systems at the University of Florida (see Tim Davis’
web-site). In Chapter 4, we describe an alternate scalable parallel algorithm for
handling banded preconditioners that arise from domain decomposition in which
the domains overlap. We demonstrate the effectiveness of this solver compared
to direct solvers such as ScaLapack or preconditioned iterative solvers for both
symmetric positive definite systems as well as non-symmetric systems. Finally,
in Chapter 5, we present our study concerning prediction of parallel scalability
of our schemes on architectures with more nodes/cores than the platforms on
which our experiments have been performed.

viii

Chapter 1

Highly Scalable Linear

Solvers: The SPIKE

Algorithm

1.1 Introduction

Banded linear systems arise in many areas of computational science and engi-
neering such as computational mechanics (fluids, structures, and fluid-structure
interaction) [69, 71] and computational nanoelectronics [59]. These applications
often give rise to very large narrow banded linear systems, which can be dense or
sparse within the band. For example, in finite-element analysis, the underlying
sparse linear systems can be reordered to result in a banded system in which
the width of the band is a small fraction of the number of unknowns.

In this report, we describe important algorithmic and performance-related
aspects of Spike, [9, 10, 33, 51, 65, 66, 67, 68, 70]. The underlying basis for
Spike is a divide and conquer technique, which involves the following stages:
(a) pre-processing: (i) partitioning of the original system on different proces-
sors, or different Symmetric Multiprocessors (SMP’s), (ii) factorization of each
diagonal block and extraction of a reduced system of much smaller size; (b)
post-processing: (iii) solving the reduced system, and (iv) retrieving the overall
solution. Not only does SPIKE enable multilevel parallelism, but it also allows
multiple choices for the pre- and post-processing stages, resulting in a poly-
algorithm. We will show that this algorithm has several built-in options that
range from using it as a pure direct solver to using it as a preconditioner for
any iterative scheme.

We present several numerical experiments that demonstrate significant speed
and scalability improvements over corresponding routines in ScaLapack [12] for
handling large banded systems on a high-end computing platform.

A general description of the SPIKE algorithm is presented in Section 1.2.

1

A =

A1

A2

A3

A4

B1

B2

B3

C2

C3

C4

F =

F1

F2

F3

F4

1

2

3

4

Figure 1.1: Partitioning of the matrix A and the RHS F, with p = 4. The size
of each partition j is nj , and the size of the coupling off-diagonal blocks Bj and
Cj of the original matrix, is m × m.

The hybrid and poly-algorithm nature of SPIKE is discussed in Section 1.3
along with different options for the treatment of the pre- and post-processing
stages. In particular, Section 1.4 and 1.5 focus on the detailed description of
two versions of the algorithm: the “Recursive” and the “Truncated” schemes,
for handling general and diagonally dominant systems, respectively. In Section
1.6, we present several numerical experiments with performance comparisons
versus ScaLapack on the computing platform IBM-SP.

1.2 The Spike algorithm

Consider solving the linear systems AX = F, where A is a narrow banded n×n
matrix, and F is the n× s multiple right hand side (RHS). We assume that the
bandwidth b is much less than the system order n.

1.2.1 Preprocessing stage

Partitioning

Any banded linear system can be partitioned into a block tridiagonal form.
If p is the number of diagonal blocks, then each banded diagonal block Aj

(j = 1, . . . , p), is of order nj (or roughly of order n/p). For a given partition
j, Bj (j = 1, . . . , p − 1), and Cj (j = 2, . . . , p), are the coupling matrices
associated with the first super- and sub-diagonal blocks, respectively. Each is
of order m << nj . Figure 1.1 illustrates the partitioning of the matrix A and
the RHS for p = 4.

2

S =

I . . .
I

*...
*

V1

W2

*...
*

I . . .
I

*...
*

V2

W3

*...
*

I . . .
I

*...
*

V3

W4

*...
*

I . . .
I

1

2

3

4

Figure 1.2: The spike factorization defined by A = DS, where D is a block-
diagonal matrix with 4 partitions. A new linear system SX = G needs, then, to
be solved, where G is the modified right hand side (DG) = F)). An independent
reduced system, of much smaller size, can be extracted from those few rows of S
immediately above and below each partitioning line.

Each partition can be associated with one or several processors (one node),
enabling multilevel parallelism. For structurally symmetric problems, m is equal
to (b − 1)/2, while for non-symmetric structure, for coding convenience, we
include some zero elements either in Bj or Cj to maintain structural symmetry,
resulting in m > (b − 1)/2.

1.2.2 Factorization

The preprocessing stage includes the factorization of each diagonal block, and
obtaining a new system that results from pre-multiplying each partition by the
inverse of its diagonal block. The resulting new system has identity matrices as
diagonal blocks, and spikes of m columns in the immediate off-diagonal blocks.

Assuming, for the time being, that each Aj is nonsingular, the matrix can
be factored as A = D S, where D is a block-diagonal matrix consisting only of
the diagonal blocks Aj ,

D = diag(A1, ..., Ap),

with S being the spike matrix shown in Fig. 1.2. For a given partition j, we
call Vj (j = 1, . . . , p − 1) and Wj (j = 2, . . . , p), respectively, the right and the
left spikes each of order nj × m.

3

The spikes Vj and Wj are given by

Vj = (Aj)
−1

[
0
Im

]
Bj , and Wj = (Aj)

−1

[
Im

0

]
Cj . (1.1)

The spikes Vj and Wj , j = 2, ..., p − 1, may be generated by solving,

Aj

[
Vj , Wj

]
=

0 Cj

... 0

0
...

Bj 0

. (1.2)

1.2.3 The Post-processing stage

Solving the system AX = F now reduces to two steps:

(a) solve DG = F (1.3)

(b) solve SX = G. (1.4)

The solution of the linear system DG = F in Step (a), yields the modified RHS
G needed for Step b, and in case of one partition per processor, is performed
with perfect parallelism. In case we decouple the pre-and post-processing stages,
this step may be combined with the generation of the spikes in equations (1.2).

To solve SX = G in Step b, one should observe that the problem can be
reduced further by solving an independent system of much smaller size,

ŜX̂ = Ĝ, (1.5)

which consists of the m rows of S immediately above and below each partitioning
line. Indeed, the spikes Vj and Wj can also be partitioned as follows

Vj = [V
(t)
j V ′

j V
(b)
j]T , and Wj = [W

(t)
j W ′

j W
(b)
j]T , (1.6)

where V
(t)
j , V ′

j , V
(b)
j , and W

(t)
j , W ′

j , W
(b)
j , are the top m, the middle nj − 2m

and the bottom m rows of Vj and Wj , respectively. We note that

V
(b)
j = [0 Im]Vj ; W

(t)
j = [Im 0]Wj , (1.7)

and
V

(t)
j = [Im 0]Vj ; W

(b)
j = [0 Im]Wj . (1.8)

Similarly, if Xj and Gj are the jth partitions of X and G, we have

Xj = [X
(t)
j X ′

j X
(b)
j]T , and Gj = [G

(t)
j G′

j G
(b)
j]T . (1.9)

It is then possible to extract, from (1.4), the independent reduced linear system
(1.5), which involves only the top and bottom elements of Vj , Wj , Xj and Gj .

4

This reduced system is block tridiagonal, with (p − 1) diagonal blocks, the kth
of which is given by

[
Im V

(b)
k

W
(t)
k+1 Im

]
. (1.10)

The corresponding off-diagonal blocks are

[
W

(b)
k 0
0 0

]
and

[
0 0

0 V
(t)
k+1

]
, (1.11)

and the associated solution and RHS are

[X
(b)
k X

(t)
k+1]

T , and [G
(b)
k G

(t)
k+1]

T .

Once the solution X̂ of the reduced system (1.5) is obtained, the global
solution X is reconstructed with perfect parallelism from Xb

k (k = 1, . . . , p − 1)
and Xt

k (k = 2, . . . , p) as follows:

X ′
1 = G′

1 − V ′
1X

(t)
2 ,

X ′
j = G′

j − V ′
j X

(t)
j+1 − W ′

jX
(b)
j−1, j = 2, . . . , p − 1

X ′
p = G′

p − W ′
jX

(b)
p−1.

(1.12)

1.3 SPIKE: a poly-algorithm

Several options are available for efficient implementation of the SPIKE algo-
rithm on parallel architectures, for reducing the complexity and required stor-
age. These choices depend on the properties of the linear system, as well as the
architecture at hand. More specifically, SPIKE allows three major options:

1. factorization of the diagonal blocks Aj ,

2. computation of the spikes, and

3. solution scheme for handling the reduced system.

In the first option, each linear system associated with Aj , can be solved
either (i) directly, making use of Gaussian elimination (LU-factorization) with
partial pivoting or Cholesky factorization if (Aj) is symmetric positive defi-
nite, (ii) using LU factorization without pivoting but with a diagonal boosting
strategy, (iii) iteratively with a preconditioning strategy, (iv) or via appropriate
approximation of the inverse of (Aj). If more than one processor is associated
with one partition, another level of the SPIKE algorithm may also be used. In

5

the following, we consider only the case where one partition is associated with
only one processor.

In the second option, the spikes can be computed either explicitly (fully or
partially) using equation (1.2), or implicitly – “on-the-fly”. We will restrict the
treatment here to explicit partial or complete determination of the spikes.

In the third option, the reduced system (1.5) can be solved either (i) directly
using a “recursive” form of the SPIKE algorithm, (ii) iteratively with a precon-
ditioning scheme, or (iii) approximately within a “truncated” SPIKE scheme
for diagonally dominant systems. Both the recursive and truncated algorithms
will be presented in detail in the following sections.

In addition, outer iterations will be necessary to assure sufficient accuracy
whenever we do not use a direct method to solve (1.3) or (1.5). The overall
SPIKE algorithm is then used as a preconditioner for the outer iterative scheme
(Krylov subspace scheme, or iterative refinement) in which (1.3) is solved once
and for all.

A multitude of options for SPIKE have been implemented. However, a com-
plete description of implementation details is beyond the scope of this report.
In the following we describe two optimal algorithms for handling general and
diagonally dominant systems.

1.4 The non-diagonally dominant case

In this section, we present a version of the SPIKE algorithm that is general
enough for handling non-diagonally dominant systems. In particular, we con-
sider LU factorization of the diagonal blocks without pivoting, but with a “di-
agonal boosting” strategy to obtain an LU factorization of slightly perturbed
counterparts of the original block. This is followed by an efficient recursive
SPIKE scheme for solving the resulting reduced system.

1.4.1 Factorization step

For numerical stability, one obtains the LU factorization of each block Aj with
partial pivoting, often by making use of the LAPACK routines [1] XGBTRF.
Here X corresponds to S, D, or Z, for single real, double real, and double complex
arithmetic. The LAPACK routines XGBTRS, based on Basic Linear Algebra
Subroutines BLAS level-2 [1], may be used to solve for the spikes (1.2) and
the RHS (1.3). We have modified this LAPACK procedure in order to take
advantage of BLAS level-3, and used it to solve triangular systems that arise in
SPIKE.

We have also developed a version of SPIKE in which the LU-Factorization is
performed without pivoting but with a “diagonal boosting” strategy to overcome
problems associated with very small pivots. The magnitude of the pivot must
then satisfy the following condition:

|pivot| > 0ε ||Aj ||,

6

where 0ε is a newly defined “machine zero”, and ||.|| is the 1-norm, for example.
If the pivot does not satisfy this condition, then its value is boosted using ε,
which depends on the machine’s unit roundoff:

pivot = pivot + ε||Aj || if pivot > 0,
pivot = pivot − ε||Aj || if pivot < 0.

We have implemented a modified version of the XDBTRF routine (originally
developed for the ScaLapack package to handle diagonally dominant matrices)
augmented by a diagonal boosting strategy. If diagonal boosting is activated,
SPIKE is not used as a direct solver but rather as a preconditioner. In this
case outer iterations via a Krylov subspace method, for example, are activated.
In most cases, few outer iterations are needed to achieve adequate reduction of
the relative residuals. Finally, since the LU factorization is performed without
pivoting, our BLAS3-based block triangular solver can be used for both the
forward and backward sweeps for solving (1.2) and (1.3).

1.4.2 The Recursive SPIKE algorithm

One natural way to solve the reduced system in parallel is to make use of a
Krylov subspace iterative method with a block Jacobi preconditioner defined by
the diagonal blocks (1.10) of the reduced system. However, for non-diagonally
dominant systems, this preconditioner may not be effective for large number
of partitions (producing large reduced systems). This often results in a large
number of iterations if one is to realize reasonable residuals, and in high inter-
processor communication cost. If the unit cost of interprocessor communication
is high, the reduced system may be solved directly on a single processor. This
alternative, however, may have memory limitations if the size of the reduced
system is large.

We propose a new direct scheme for solving the reduced system in parallel.
This “Recursive” scheme, involves successive iterations of the SPIKE algorithm
resulting in better balance between the computational and communication costs.

Preliminary: The two-partitions case

Using only two partitions, p = 2, one can observe that the reduced system,
which consists now of only one diagonal block (1.10), needs only to be solved
directly. This reduced system can be extracted from the central part of the
system (1.4)

[
Im V

(b)
1

W
(t)
2 Im

][
X

(b)
1

X
(t)
2

]
=

[
G

(b)
1

G
(t)
2

]
. (1.13)

The solution steps consist of the following:

• Form E = Im − W
(t)
2 V

(b)
1

7

• Solve EX
(t)
2 = G

(t)
2 − W

(t)
2 G

(b)
1 to obtain X

(t)
2

• Compute X
(b)
1 = G

(b)
1 − V

(b)
1 X

(t)
2 .

The rest of the solution of X1, and X2 can be retrieved using (1.12).

Recursive SPIKE: the multiple partitions case

Here, we assume that the number of partitions is given by p = 2d (∀d > 1).
After forming the spike matrix S (see Fig. 1.2), the number of partitions of the
new linear system (1.4) can be divided by two, and another level of the SPIKE
algorithm may be applied. This process is repeated recursively until we obtain
only two partitions for the newest matrix S. The resulting reduced system has
the form (1.13).

In our implementation, the Recursive scheme is not concerned with the over-
all matrix S but rather with the matrix Ŝ of the reduced system (1.5) itself. This
allows us to simplify the implementation, and reduce the memory requirements
while saving all the different levels of the new spikes. Note that in the reduced
system (1.5), the matrix Ŝ is block tridiagonal, where the diagonal blocks are
defined in (1.10) and the off diagonal blocks are as given in (1.11).

Observing that we can also extract an independent reduced system of order
2mp rather than order 2m(p−1), if we include, in addition, the top m rows and
the bottom m rows of the first and last partitions, respectively. In this case,
the structure of the reduced system remains block tridiagonal in which each
diagonal block is an identity matrix of order 2m, and the off-diagonal blocks
associated with the k-th diagonal block are given by,

[
0 W

(t)
k

0 W
(b)
k

]
for k = 2, . . . , p , and

[
V

(t)
k 0

V
(b)
k 0

]
for k = 1, . . . , p − 1.

(1.14)

Denoting the spikes of the new reduced system at level 1 of the recursion by v
[1]
k

and w
[1]
k , where

v
[1]
k = [V

(t)
k V

(b)
k]T , and w

[1]
k = [W

(t)
k W

(b)
k]T , (1.15)

the matrix S̃1 of the new reduced system, for p = 4 takes the form:

8

S̃1 =

I

I

I

I

right spikes: v
[1]
k ; k = 1, 2, 3

left spikes: w
[1]
k ; k = 2, 3, 4.

In preparing for level 2 of the recursion of the Spike algorithm, we partition
the matrix S̃1 using p/2 partitions each of size 4m. The matrix S̃1 can then be
factored as

S̃1 = D1 S̃2

where D1 is formed by the p/2 diagonal block of S̃1 each of size 4m, thus S̃2

represents the new Spike matrix at the level 2 composed of the spikes v
[2]
k and

w
[2]
k . For p = 4, these matrices are of the form,

D1 =

I

0 I

0

I

0 I

0

right spikes: v
[2]
k ; k = 1, 3

left spikes: w
[2]
k ; k = 2, 4

and

9

S̃2 =

I

I

right spikes: v
[3]
k ; k = 1

left spikes: w
[3]
k ; k = 2.

In general, at level i of the recursion, the spikes v
[i]
k , and w

[i]
k , with k ranging

from 1 to p/(2i), are of order 2im × m. Thus, if the number of the original
partitions p is equal to 2d, the total number of recursion levels is d − 1 and the
matrix S̃1 can be expressed in the factored form,

S̃1 = D1D2 . . .Dd−1 S̃d

where the matrix S̃d has only two spikes v
[d]
1 and w

[d]
2 . The reduced system can

then be written as
S̃dX̃ = B, (1.16)

where B is the modified right hand side:

B = D−1

d−1
. . .D−1

2
D−1

1
G̃. (1.17)

If we assume that the spikes v
[i]
k , and w

[i]
k (∀k) of the matrix S̃i are known at a

given level i, then we can compute the spikes v
[i+1]
k , and w

[i+1]
k at level i + 1 as

follows:

Step 1. Denoting the bottom and the top blocks of the spikes at the level i by

v
[i](b)
k′ = [0 Im]v

[i]
k′ ; w

[i](t)
k′ = [Im 0]w

[i]
k′ ,

and the middle block of 2m rows of the spike at level i + 1 by

[
v̇
[i+1]
k

v̈
[i+1]
k

]
= [0 I2m 0]v

[i+1]
k ;

[
ẇ

[i+1]
k

ẅ
[i+1]
k

]
= [0 I2m 0]w

[i+1]
k ,

one can form the following reduced systems

[
Im v

[i](b)
2k−1

w
[i](t)
2k Im

][
v̇
[i+1]
k

v̈
[i+1]
k

]
=

[
0

v
[i](t)
2k

]
, ∀k = 1, 2, . . . ,

p

2i−1
− 1, (1.18)

10

and
[

Im v
[i](b)
2k−1

w
[i](t)
2k Im

][
ẇ

[i+1]
k

ẅ
[i+1]
k

]
=

[
w

[i](b)
2k−1

0

]
∀k = 2, 3, . . . ,

p

2i−1
. (1.19)

These reduced systems are solved in a manner similar to (1.13) to obtain
the solutions of the center parts of the spikes at the level i + 1.

Step 2 The entire solution of the spikes at the level i+1 is retrieved as follows

[I2im 0]v
[i+1]
k = −v

[i]
2k−1v̈

[i+1]
k , [0 I2im]v

[i+1]
k = v

[i]
2k − w

[i]
2k v̇

[i+1]
k ,
(1.20)

and

[I2im 0]w
[i+1]
k = w

[i]
2k−1 − v

[i]
2k−1ẅ

[i+1]
k [0 I2im]w

[i+1]
k = −w

[i]
2kẇ

[i+1]
k .

(1.21)

In order to compute one step of the modified RHS (1.17) as G̃i = D−1

i
G̃i−1

(with the first being G̃1 = D−1

1
G̃), one has to solve the linear system

Di G̃i = G̃i−1, which is block diagonal. For each diagonal block k, the re-
duced systems are similar to those in (1.13) or in (1.18) and (1.19) but the RHS
is now defined as function of G̃i−1. Once we obtain the partial solution at the
center part of each G̃i, associated with each block k in Di, the entire solution
is retrieved as in (1.20) and (1.21). In the same way, the linear system (1.16)
involves only one reduced system to solve and only one retrieval stage to get
the solution X̃. Finally, the overall solution X is obtained using the procedure
(1.12).

1.4.3 Additional remarks

The generation of the spikes at the various levels is included in the factorization
step. In this way, the solver makes use of the spikes stored in the memory,
thus allowing solution of the reduced system quickly and efficiently. Since in
many applications one has to solve many linear systems with the same coefficient
matrix A but with different RHSs, optimization of the solver step is thus crucial
for the success of SPIKE.

1.5 The diagonally dominant case

In this section, we describe a version of the SPIKE algorithm that is optimized
for handling diagonally dominant systems. A truncated scheme is proposed
that yields a modified reduced system that is block diagonal rather than block
tridiagonal. This allows solving the reduced system more efficiently on parallel
architectures. Furthermore, it facilitates different new options for the factoriza-
tion steps that make it possible to avoid the computation of the entire spikes.

11

1.5.1 The truncated SPIKE algorithm

If the matrix Aj is diagonally dominant, one can show that the magnitude of
the elements of the right spikes Vj decay in magnitude from bottom to top,
while the elements of the left spikes Wj decay from top to bottom. Since the
size n of Aj is much larger than the size m of the blocks Bj and Cj , the bottom

blocks of the left spikes W
(b)
j and the top blocks of the right spikes V

(t)
j can be

approximately set equal to zero. Thus, it follows that the off-diagonal blocks
of reduced system (1.11) are equal to zero, and the reduced matrix Ŝ is then
approximated by its block diagonal (1.10). Each diagonal block of this truncated
reduced system can be solved directly using the same procedure described for
solving the system (1.13), leading to enhanced use of parallelism.

1.5.2 The truncated factorization stage

Since the matrix is diagonally dominant, the LU factorization of each block Aj

can be performed without pivoting, using for example the modified LAPACK
routine XDBTRF in the ScaLapack package (no boosting strategy is necessary).
Using an LU-factorization without pivoting, one can get the bottom block of Vj

from (1.1) involving only the bottom m × m blocks of L and U. Obtaining the
top block of Wj still requires computing the entire left j-th spike with complete
forward and backward sweeps. Another approach consists of performing a UL-
factorization (Gaussian elimination that produces the factorization in the form
of the product of an upper triangular matrix and a lower triangular matrix)
without pivoting. Similar to the LU-factorization, this allows obtaining the top
block of Wj involving only the top m×m blocks of the new U, L. Our numerical
experiments indicate that the time consumed by this LU/UL strategy, is much
less than that taken by performing only one LU factorization per diagonal block
and generating the entire left spikes. Using a permutation of the rows and
columns of the original matrix, we can use the same LU factorization routine
to perform the UL-factorization.

Approximation of the factorization stage

An alternate to performing a UL-factorization of the block Aj is to approximate

the top of the left spike, W
(t)
j , of order m, by inverting only an l× l (l > m) top

diagonal block (left top corner) of the banded block Aj . Typically, we choose
l = 2m to get a suitable approximation of the m − by − m left top corner of
the inverse of Aj . However, the quality of this approximation depends on the
degree of diagonal dominance. With such a strategy, SPIKE thus needs to be
used as a preconditioner. In general, convergence of an outer Krylov subspace
iterative scheme is often realized after only few iterations.

Using the above Truncated scheme, the entire spikes are not computed explicitly.
Therefore, once the reduced system is solved, retrieving of the entire solution
cannot be done using equation (1.12). Rather, we extract the RHS from the

12

contributions of the tying blocks Bj and Cj , and then solve the resulting block
diagonal system using either the previously computed LU or UL factorizations,
as shown below:

A1 X1 = F1 −
[

0
Im

]
BjX

(t)
2 ,

Aj Xj = Fj −
[

0
Im

]
BjX

(t)
j+1 −

[
Im

0

]
CjX

(b)
j−1, j = 2, . . . , p − 1

Ap Xp = Fp −
[
Im

0

]
CjX

(b)
p−1.

(1.22)

1.6 Performance results and comparisons with

ScaLapack

The performance of different versions of the SPIKE algorithm are compared
with ScaLapack’s banded solvers. We consider two sets of experiments:

1. speed improvement over ScaLapack for systems with varying bandwidths
on 32 processors.

2. speed improvement over ScaLapack on a given banded system as the num-
ber of processors is varied from 32 to 512.

All the tests are performed on the DataStar IBM-SP power4 platform. This
platform has 176 (8-way) P655+ nodes, with 16 GB of memory and 1.5GHz
CPU speed. Also, the use of each 8-way node is exclusive allowing only one user
at the node at any time.

1.6.1 SPIKE: performance on 32 processors

We consider a system of order n = 480, 000 that is dense within the band,
with one RHS (s = 1). Three main tests with different SPIKE algorithms,
have been conducted and the results are listed in Table (1.1). Tests 1, 2a
and 2b, are concerned with non-diagonally dominant systems, while Tests 3a
and 3b, deal with diagonally dominant ones as the bandwidth (maximum num-
ber of nonzero elements per row) varies from 81 to 641. These systems are
solved using the SPIKE schemes presented, respectively, in sections 1.4 and
1.5. For each test, we show the speed improvement of the SPIKE algorithm
over ScaLapack, λ = Tsca./TSpike, for the factorization, the solver, as well as
the total time. The ScaLapack routines used for the factorization and solve
stages, are PDGBTRF and PDGBTRS for non-diagonally dominant systems,
and PDDBTRF and PDDBTRS for the diagonally dominant one.

13

Table 1.1: List of various tests associated with various options for the SPIKE
algorithm.

Diagonally Factorization Solve Outer-
Dominant step step iterations

Test 1 No LU with pivoting Recursive No

Test 2a No LU without pivoting + boost. Recursive No
Test 2b No LU without pivoting + boost. Recursive Yes

Test 3a Yes LU-UL without pivoting Truncated No
Test 3b Yes LU without pivoting + approx. Truncated Yes

Test 1

In this experiment for non-diagonally dominant systems, SPIKE is performed
using the Recursive algorithm to solve the reduced system. The LU-factorization
of the diagonal blocks of the original matrix, is implemented with partial piv-
oting using the LAPACK routine: DGBTRF. SPIKE is thus used as a direct
solver. Here, we have assumed that each diagonal block is nonsingular. The
speed improvement factor, λ, presented in Fig.1.3 shows that SPIKE is, on the
average twice as fast as ScaLapack for the factorization and solve steps.

Test 2a and 2b

In this set of numerical experiments, we assume that we have no knowledge
regarding the non-singularity of the diagonal blocks. Thus, avoiding pivoting in
the LU-factorization of the diagonal blocks, together with adopting a diagonal
boosting strategy, we obtain LU factorizations of slightly perturbed block diag-
onal matrices. The Recursive SPIKE scheme is thus used as a preconditioner
and outer-iterations are needed to assure convergence to the true solution, i.e.,
assuring that the relative residual:

r =
||AX − F||∞

||F||∞
,

reaches a given tolerance. If diagonal boosting is performed during the fac-
torization stage (i.e., a “zero-pivot” is detected), the solve part of the SPIKE
algorithm is automatically used inside an iterative scheme. In our current imple-
mentation, we can use either the BiCGstab iterative scheme, or regular iterative
refinement. When an outer iteration is activated, we use the stopping criterion,
r < 10−8. If no diagonal boosting is performed during the factorization stage,
no outer iteration is needed and SPIKE is used as a direct solver. Throughout,
our experiments yielded relative residuals much smaller than 10−8.

Figure 1.4 shows performance results for the two following cases: (i) Test
2a - no diagonal boosting, no outer-iteration needed, (ii) Test 2b - diagonal
boosting, outer-iterations needed.

For the factorization stage of both Test 2a and Test 2b, the speed improve-
ment λ over ScaLapack, starts at 2.1 for a bandwidth of b = 81, increasing

14

1.1

1.4

2.1
1.9

2.2 2.2 2.2

2.6

81 161 241 321 401 481 561 641
Bandwidth

1

1.5

2

2.5

3

Fa
ct

or
iz

at
io

n

1.6 1.6

1.9
1.8

1.9
2

2.2

2.8

1

1.5

2

2.5

3

So
lv

e

1.1

1.4

2.1
1.9

2.2 2.2 2.2

2.6

1

1.5

2

2.5

3
T

ot
al

Figure 1.3: Speed improvement for Test 1 of Recursive SPIKE, with partial
pivoting, over ScaLapack for non-diagonally dominant systems.

steadily as the bandwidth increases until it reaches 11.5 for b = 641. This rep-
resents a significant speed improvement for the SPIKE algorithm than those
presented in Fig.1.3.

For the solve stage, Test 2a shows better results than Test 1, with λ reaching
3.5, while in Test 2b λ averages only 1.3. The results are shown after one-half
BiCGstab iteration (one or two iterative refinements are also enough to get the
desired convergence). Although the solve stage is slower for this case, due to the
time taken by the matrix-vector multiplications in the outer iterative scheme,
overall SPIKE is still faster than ScaLapack by factors ranging from 2.0 to 11.0.

Test 3a and 3b

These experiments are concerned with diagonally dominant systems solved using
the Truncated SPIKE algorithm. In Test 3a, SPIKE is used as a direct solver
using the LU-UL factorization strategy. In Test 3b, only LU is performed on
the diagonal blocks and the top blocks W t

j are approximated, thus SPIKE is
used as a preconditioner for a suitable outer iteration. Figure 1.5 shows the
speed improvements over ScaLapack obtained using these two schemes. For the
factorization stage of Test 3a, λ increases with increasing bandwidth from 1.3

15

2.1
3.2

5.1 5.4

8.1

9.4 9.5

11.5

81 161 241 321 401 481 561 641
Bandwidth

2

4

6

8

10

12

Fa
ct

or
iz

at
io

n

4.1

2.9
3.1 3.2 3.1 3.1

3.6
3.9

1.5
1.2 1.1 1.2 1.1 1.1 1.2

1.5

1

2

3

4

5

So
lv

e
Test 2a
Test 2b

2.5
3.1

5 5.2

7.9

9.3 9.3

11.3

2
2.8

4.5 4.9

7.4

8.7 8.9

10.9

2

4

6

8

10

12
T

ot
al

Figure 1.4: Speed improvement over ScaLapack for Recursive SPIKE without
pivoting for non-diagonally dominant matrices. No “zero-pivot” is detected in
Test 2a, while in Test 2b outer-iterations are needed after diagonal boosting. In
Test 2b, one half iteration of BiCGstab is necessary to satisfy the convergence
criterion: r < 10−8

for b = 81 to 5.3 for b = 641. In Test 3b, the corresponding speed improvement
roughly doubles indicating that the time taken to approximate the blocks W t

j

is negligible compared to the the time taken by the UL factorization. For the
solve stage, the SPIKE and ScaLapack schemes are equivalent. For Test 3a,
λ = 1, and for Test 3b, λ drops to roughly 0.2. This is due to the matrix-vector
multiplications required by these 1 to 3 BiCGstab outer iterations needed for
convergence. Overall, however, speed improvement over ScaLapack based on
the total time is still significant as the bandwidth increases. We note that the
version of SPIKE used in Test 3b yields higher speed improvement and thus
could be of value in applications where the factorization and solve stages are
not decoupled.

Additional remarks

Table 1.2 lists the different tests summarizing the time taken by both the fac-
torization and solve stages of each algorithm for handling a given system with

16

1.3
1.8

2.6 2.8
3.2

3.9
4.5

5.3

2.7

4

5.6 5.9
6.4

7.6
8.5

9.8

81 161 241 321 401 481 561 641
Bandwidth

2

4

6

8

10

Fa
ct

or
iz

at
io

n

1
0.9 0.9 0.9 0.9

1

1.3
1.1

0.3 0.3 0.3 0.3 0.3
0.2 0.2 0.2

0

0.5

1

1.5

2

So
lv

e

Test 3a
Test 3b

1.2
1.7

2.4 2.6
3.1

3.7
4.3

5.1

1.6
2.2

3.5 3.7
4.3

4.9
5.5

6.2

2

4

6

8
T

ot
al

Figure 1.5: Speed improvement over ScaLapack for the Truncated SPIKE al-
gorithm for diagonally dominant systems. Test 3a uses the LU-UL strategy,
while the Test 3b requires outer iterations because of the approximation used to
compute W t

j in the factorization stage.

bandwidth b = 401. For the factorization stage, one can see that Test 1 con-
cerned the most expensive SPIKE scheme – LU-factorization with partial piv-
oting. Without pivoting, but with a diagonal boosting strategy, this time drops
significantly in Tests 2a and 2b. The LU-UL strategy used in Test 3a reduces
the times consumed further by avoiding the generation of the spikes. This time
is again cut in half in Test 3b by eliminating the need of the UL factorization.
For the solve stage, the best time is obtained for Tests 2a and 3a as no outer
iteration is involved, while outer iterations cause Tests 2b and 3b to be the most
expensive.

1.6.2 Scalability

In this section, we consider a system of order n = 1, 920, 000 with a bandwidth
b = 401. Different versions of SPIKE are used for diagonally or non-diagonally
dominant systems on p = 32, 64, 128, 256 and 512 processors. We note that until
p = 512, the size of each partition nj = n/p is much larger than m = (b − 1)/2
(number of columns in each spike).

17

Table 1.2: List of various tests associated with various options for the SPIKE
algorithm augmented with factorization and solve times (in seconds) obtained
for b = 401. ScaLapack times are also given for comparisons.

Diagonally Factorization Solve Outer- Spike Time(s) Scal. Time(s)
Dominant step step iterations Fact., Solve Fact., Solve

Test 1 No LU with pivoting Recursive No 9.11, 0.16 20.41, 0.30

Test 2a No LU without pivoting + boost. Recursive No 2.56, 0.10 20.61 0.31
Test 2b No LU without pivoting + boost. Recursive Yes 2.55, 0.29 20.55 0.32

Test 3a Yes LU-UL without pivoting Truncated No 1.22, 0.09 3.92 0.082
Test 3b Yes LU without pivoting + approx. Truncated Yes 0.6, 0.32 3.87 0.082

Non-diagonally dominant systems

Two versions of SPIKE are considered: the Recursive SPIKE algorithm with
pivoting used in Test 1, and the Recursive SPIKE without pivoting used in
Test2b. Figures 1.6 and 1.7, respectively compare the times consumed for the
factorization and the solve stages. For the factorization stage, both versions
of SPIKE are faster than ScaLapack. Although SPIKE without pivoting is
the fastest algorithm, its scalability is not as robust due to the communication
costs on the IBM-SP. However, as the ratio nj/m increases (up to 128), the
computational time tends to be more dominant than that required for inter-
processor communications resulting in good scalability on the IBM-SP. For the
solve stage, both versions of Spike perform better than ScaLapack. In all the
cases, for this computing platform, scalability deteriorates beyond 128 proces-
sors as the interprocessor communication time required for solving the reduced
system increases.

Diagonally dominant systems

As in Test 3a, we consider the LU-UL strategy for the Truncated SPIKE. In
Fig. 1.8, one can see that the factorization times of SPIKE are lower than those
of ScaLapack, with reasonable scalability until 128 processors. The results
obtained for the solve stage in Fig. 1.9 show that the ScaLapack and SPIKE
times are equivalent until 256 processors and the scaling is almost optimal.
However, for 512 processors, SPIKE proves to be more scalable than ScaLapack.
Indeed, using the Truncated version of SPIKE, the communication time to solve
the reduced system is minimal, and the computational time dominates that
required by interprocessor communication.

18

Table 1.3: Test 1- Simulation times and relative speed improvement (λ) vs
ScaLapack, obtained with the Recursive SPIKE with partial pivoting for non-
diagonally dominant systems.

Factorization Solve Total
Bandwidth

b=81

b=161

b=241

b=321

b=401

b=481

b=561

b=641

TSca.(s) λ TSpike(s)

0.43 0.41
1.1

1.64 1.18
1.4

5.22 2.45
2.1

8.83 4.71
2.2

20.41 9.11
2.2

34.69 15.57
2.2

47.91 22.11
2.2

75.70 29.20
2.6

TSca.(s) λ TSpike(s)

0.088 0.054
1.6

0.121 0.078
1.6

0.19 0.10
1.9

0.24 0.13
1.8

0.30 0.16
1.9

0.37 0.18
2.0

0.48 0.22
2.2

0.69 0.25
2.8

TSca.(s) λ TSpike(s)

0.52 0.46
1.1

1.76 1.25
1.4

5.42 2.55
2.1

9.07 4.84
1.9

20.72 9.28
2.2

35.06 15.75
2.2

48.39 22.33
2.2

76.39 29.45
2.6

Table 1.4: Test 2a- Simulation times and relative speed improvement (λ) w.r.t.
ScaLapack, obtained with the Recursive SPIKE without pivoting where no-outer
iteration is needed, for non-diagonally dominant systems.

Factorization Solve Total
Bandwidth

b=81

b=161

b=241

b=321

b=401

b=481

b=561

b=641

TSca.(s) λ TSpike(s)

0.49 0.21
2.4

1.63 0.53
3.1

5.24 1.03
5.1

8.83 1.65
5.3

20.61 2.56
8.1

34.75 3.68
9.5

47.99 5.05
9.5

75.69 6.56
11.5

TSca.(s) λ TSpike(s)

0.090 0.022
4.1

0.130 0.044
2.9

0.20 0.064
3.1

0.25 0.078
3.2

0.31 0.099
3.1

0.37 0.12
3.1

0.48 0.14
3.6

0.66 0.17
3.9

TSca.(s) λ TSpike(s)

0.58 0.23
2.5

1.75 0.57
3.1

5.44 1.10
5.0

9.08 1.73
5.2

20.61 2.66
7.9

35.12 3.79
9.3

48.47 5.19
9.3

76.36 6.74
11.3

19

Table 1.5: Test 2b- Simulation times and relative speed improvement (λ) w.r.t.
ScaLapack, obtained with the Recursive SPIKE without pivoting where outer
iterations are needed, for non-diagonally dominant systems.

Factorization Solve Total
Bandwidth

b=81

b=161

b=241

b=321

b=401

b=481

b=561

b=641

TSca.(s) λ TSpike(s)

0.44 0.21
2.1

1.68 0.53
3.2

5.26 1.04
5.1

8.93 1.66
5.4

20.55 2.55
8.1

34.27 3.66
9.4

47.85 5.04
9.5

75.84 6.58
11.5

TSca.(s) λ TSpike(s)

0.090 0.060
1.5

0.14 0.12
1.2

0.20 0.17
1.1

0.27 0.23
1.2

0.32 0.29
1.1

0.38 0.34
1.1

0.47 0.39
1.2

0.72 0.47
1.5

TSca.(s) λ TSpike(s)

0.59 0.28
2.0

1.83 0.65
2.8

5.46 1.21
4.5

9.20 1.89
4.9

20.87 2.84
7.4

34.64 4.00
8.7

48.33 5.44
8.9

76.56 7.05
10.9

Table 1.6: Test 3a- Simulation times and relative speed improvement (λ) w.r.t.
ScaLapack, obtained with the Truncated SPIKE with LU-UL strategy, for diag-
onally dominant systems.

Factorization Solve Total
Bandwidth

b=81

b=161

b=241

b=321

b=401

b=481

b=561

b=641

TSca.(s) λ TSpike(s)

0.20 0.16
1.3

0.63 0.35
1.8

1.58 0.61
2.6

2.38 0.85
2.8

3.92 1.22
3.2

6.40 1.65
3.9

9.64 2.16
4.5

14.36 2.72
5.3

TSca.(s) λ TSpike(s)

0.022 0.022
1.0

0.041 0.044
0.9

0.056 0.062
0.9

0.068 0.073
0.9

0.082 0.090
0.9

0.10 0.10
1.0

0.15 0.12
1.3

0.16 0.14
1.1

TSca.(s) λ TSpike(s)

0.22 0.18
1.2

0.67 0.40
1.7

1.64 0.67
2.4

2.45 0.93
2.6

4.00 1 .31
3.1

6.51 1.75
3.7

9.79 2.28
4.3

14.52 2.87
5.1

20

79.4

40.2

21.2

11.6

7.27

37.6

18.2

9.27

5.54

3.18

9.34

4.88

2.71

1.87

1.3

32 64 128 256 512
CPU

1

10

100
L

og
-T

im
e

(s
)

TSca.

TSpike with pivoting

TSpike - w/o pivoting

Linear scaling

Figure 1.6: Factorization times (on log scale) taken by ScaLapack, Recursive
SPIKE with pivoting, and Recursive SPIKE without pivoting for non-diagonally
dominant systems.

Table 1.7: Test 3b- Simulation times and relative speed improvement (λ) w.r.t.
ScaLapack, obtained with the Truncated SPIKE with LU factorization and an
approximation strategy, for diagonally dominant systems.

Factorization Solve Total
Bandwidth

b=81

b=161

b=241

b=321

b=401

b=481

b=561

b=641

TSca.(s) λ TSpike(s)

0.20 0.076
2.7

0.68 0.17
4.0

1.58 0.28
5.6

2.47 0.42
5.9

3.87 0.60
6.4

6.42 0.85
7.6

9.70 1.15
8.5

14.45 1.48
9.8

TSca.(s) λ TSpike(s)

0.022 0.062
0.3

0.042 0.016
0.3

0.056 0.18
0.3

0.072 0.26
0.3

0.082 0.32
0.3

0.10 0.47
0.2

0.15 0.66
0.2

0.17 0.89
0.2

TSca.(s) λ TSpike(s)

0.22 0.14
1.6

0.72 0.33
2.2

1.64 0.46
3.5

2.54 0.68
3.7

3.95 0.92
4.3

6.53 1.32
4.9

9.85 1.80
5.5

14.61 2.37
6.2

21

1.16

0.59

0.32

0.19

0.108

0.59

0.31

0.17

0.1

0.07

0.39

0.2

0.12

0.095

0.059

32 64 128 256 512
CPU

0.1

1

L
og

-T
im

e
(s

)

TSca.

TSpike - with pivoting

TSpike - w/o pivoting

Linear scaling

Figure 1.7: Solve times (on log scale) taken by ScaLapack, Recursive SPIKE with
pivoting, and Recursive SPIKE without pivoting for non-diagonally dominant
systems.

22

14.8

7.5

3.88

2.13

1.28

4.86

2.48

1.29

0.85

0.51

32 64 128 256 512
CPU

1

10

L
og

-T
im

e
(s

)

TSca.

TSpike with LU-UL

Linear scaling

Figure 1.8: Time for the factorization stage (on log scale) for ScaLapack, and
the Truncated SPIKE using LU-UL strategy, for diagonally dominant systems.

23

0.32

0.16

0.084

0.045
0.041

0.34

0.17

0.089

0.047

0.024

32 64 128 256 512
CPU

0.1

L
og

-T
im

e
(s

)

TSca.

TSpike with LU-UL

Linear scaling

Figure 1.9: Time for the solve stage (on log scale) for ScaLapack, and the Trun-
cated SPIKE using LU-UL strategy, for diagonally dominant systems.

24

Chapter 2

A Parallel Framework for

Solving Banded Linear

Systems that are Sparse

Within the Band

2.1 Introduction

A large number of applications produce narrow banded systems (with or without
reordering) that are sparse within the band. For these systems in which the
bandwidth is not sufficiently narrow so as to be treated as dense within the
band, we need to develop an alternate version of SPIKE. A SPIKE “on-the-
fly” scheme is proposed that does not require the generation of the spikes, and
for which the reduced system is not formed explicitly. Rather, the reduced
system is solved via a matrix-free iterative scheme (such as BiCGstab) in which
the matrix-vector multiplications are performed “on-the-fly”. This scheme is
ideally suited for handling banded systems with large sparse bands. In addition,
a multi-level parallel version of SPIKE is proposed to take advantage of parallel
sparse direct solvers such as SupeLU [52], MUMP’S [56] or PARDISO [58].

Solving the reduced system implicitly

The top and bottom parts of the spikes Vj and Wj that constitute the reduced
system, can be expressed as follows:

25

V
(b)
j =

[
0 Im

]
(Aj)

−1

[
0
Im

]
Bj , W

(t)
j =

[
Im 0

]
(Aj)

−1

[
Im

0

]
Cj ,

V
(t)
j =

[
Im 0

]
(Aj)

−1

[
0
Im

]
Bj , W

(b)
j =

[
0 Im

]
(Aj)

−1

[
Im

0

]
Cj .

2.2 A sparse SPIKE system solver using multi-

level parallelism

For banded systems that are sparse within the band, existing parallel sparse
direct solvers such as SupeLU, MUMPS, or PARDISO, may not be successful
in minimizing the fill-in in the factorization stage even after reordering. This is
particularly true if the matrix is narrow banded, i.e., the ratio of the bandwidth
to the system size is small (ranging from 0.001 to 0.01). In the SPIKE scheme,
the partitioning stage will create diagonal blocks with larger bandwidth-size
ratios that allow efficient use of these sparse direct solvers on each partition. To
minimize the time taken by the solve stage of the SPIKE “on-the-fly” scheme,
we employ a two-level parallel scheme for obtaining a reduced system of much
smaller size, and thus easier to solve by an iterative scheme. For instance in Fig.
2.1, we consider four partitions and make use of the PARDISO shared memory
direct solver in each partition (i.e., node), while the SPIKE distributed memory
scheme is used across partitions (i.e., nodes).

Figure 2.1: SPIKE with two-level parallelism using PARDISO within each node.
The machine used for the illustration, has 4 dual-processor nodes.

26

Table 2.1: Test (a). SPIKE runs using PARDISO on 2 and 4 nodes and Trun-
cated SPIKE on 8 processors, with Reordering, Factorization, Solve, and Total
times in seconds.

Test (a) Reord. Fact. Solve Total Residual

SPIKE 2-nodes 9.48 1.55 4.54 15.57 10−7

SPIKE 4-nodes 5.68 0.77 2.3 8.76 10−7

Trunc. SPIKE (8) 0 0.84 0.14 0.98 10−14

2.3 Numerical experiments

We consider two test cases for non-diagonally dominant symmetric positive def-
inite systems with different bandwidths. The systems are obtained via a 3-D
finite element discretization of the Poisson equation [59]:

Test (a) size n = 432, 000, bandwidth b = 177, number of non-zero elements
nnz = 7, 955, 116, with 10.4% sparsity density within the band.

Test (b) n = 471, 800, b = 1455, nnz = 9, 499, 744, 1.4% sparsity density
within the band.

Our numerical experiments are performed on an Intel dual-Xeon 3.2 Ghz
Linux cluster of four nodes with Infiniband connection. Observing that the
PARDISO package is included in the Intel-MKL library, Table 2.1 shows the
time consumed in the various stages of SPIKE with PARDISO on 2 and 4
nodes, and the Truncated SPIKE on 8 processors assuming that the matrix is
dense within the band.

Table 2.2: Test (b). SPIKE runs using PARDISO on 2 and 4 nodes, with
Reordering, Factorization, Solve, and Total times in seconds.

Test (b) Reord. Fact. Solve Total Residual

SPIKE 2-nodes 18.69 11.06 23.06 52.82 10−7

SPIKE 4-nodes 8.41 6.54 10.85 25.81 10−7

One observes that for such narrow banded systems as proposed in test (a),
SPIKE becomes much more effective (speed and accuracy) if we consider the
matrix as dense within the band. Also, as stated previously, we demonstrate
that the Truncated SPIKE scheme converges nicely even if the system in test (a)
is not diagonally dominant. The SPIKE-PARDISO “on-the-fly” scheme shows
good scalability for the reordering, factorization and solve stages, where the
outer iterations are performed using BiCGstab with a relative residual stopping
criterion of 10−7. In contrast, if one uses PARDISO alone on one and two
processors on the same system, the reordering times remain almost unchanged
at 18.5s, while the factorization times range from 4.1s to 3.1s. Also, the times
consumed by the distributed memory solvers MUMPS and SuperLU on 1, 2, 4
and 8 processors associated with 1, 2, 4, and 4 nodes, respectively, are given by:

27

• reordering stage: ∼ 17s for MUMPS (for all parallel configurations), and
from 10.5s to 7.5s for SuperLU,

• factorization stage: 6.3s, 4.2s, 3s and 20s for MUMPS with excessive mem-
ory swaps on 8 processors, and from 17s to 180s for SuperLU due to too
much fill-in and memory swaps on our machine (with 4GB of memory per
node).

In contrast to test (a), the system in test (b) cannot be treated as dense
within the band. Table 2.2 shows the results realized by SPIKE with PARDISO
on 2 and 4 nodes. SPIKE-PARDISO “on-the-fly” also shows very good scalabil-
ity, with more than a factor two for the reordering stage. Due to excessive fill-in
in the factorization stage, both MUMPS and SuperLU require more memory
than available in our platforms.

28

Chapter 3

Weighted Matrix Ordering

and Banded

Preconditioners for

Non-symmetric Linear

System Solvers

3.1 Introduction

Solving sparse linear systems is the most time consuming part of many applica-
tions in computational science and engineering. While direct methods provide
robust solvers (i.e., they are guaranteed to find an existing solution in a pre-
cisely characterizable amount of time), their application is feasible only if the
system is not very large. Iterative methods, on the other hand, take advantage
of system properties to provide good approximations to the solution in much
shorter times. Furthermore, while iterative solvers are more scalable on paral-
lel architectures, they are not as robust as direct solvers. In iterative solvers,
preconditioners are often used to improve the convergence properties. Unlike
approximate factorization-based preconditioners, banded preconditioners have
excellent parallel scalability [61].

In order to apply a banded solver, it is necessary to reduce the bandwidth of
the system. While traditional bandwidth reduction techniques such as Reverse
Cuthill-McKee [20] and Sloan [62], are successful for classes of problems, their
application for extraction of effective banded preconditioners is limited. This is
because, the performance of these algorithms depends on the intrinsic sparsity
pattern of the matrix under consideration, i.e., they are only applicable if the
matrix can be reordered into a narrow banded system, so that a direct solver can

29

be used. Parallel banded solvers, such as SPIKE [67], also require a reasonably
small bandwidth, since the volume of communication is directly dependent on
the bandwidth. Clearly, this may not be the case for most linear systems.
Symmetric reordering alone does not guarantee a nonsingular preconditioner.
In fact, in many applications such as circuit or chemical process simulation, the
main diagonal is likely to contain many zeros raising the likelihood of a singular
banded preconditioner.

To overcome these problems, we developed a bandwidth reduction technique
aimed at encapsulating as many of the heaviest elements of the matrix into a
central narrow band. This makes it possible to extract a narrow-banded pre-
conditioner by dropping the entries that are outside the band. To solve the
weighted bandwidth reduction problem, we use a weighted spectral reordering
(WSO) technique that provides an optimal solution to a continuous relaxation
of the corresponding optimization problem. This technique is a generalization of
spectral reordering, which has also been effectively used for reducing the band-
width and envelope of sparse matrices [4]. To alleviate the problems associated
with symmetric reordering, we couple this method with non-symmetric reorder-
ing techniques, such as the maximum traversal algorithm [25], to make the main
diagonal zero free and place the largest entries on the main diagonal [26].

The resulting algorithm can be summarized as follows: (i) use non-symmetric
reordering to make the main diagonal free of zeros, (ii) use weighted spectral
reordering to move larger elements closer to the diagonal, and (iii) extract a
narrow central band to use as a preconditioner for a Krylov subspace method.
Our results show that this yields a fast, highly parallelizable preconditioner
with excellent convergence characteristics, particularly for non-symmetric ma-
trices with significantly variable entries in terms of their magnitude. We also
demonstrate that WSO is more robust than LU-type preconditioners.

3.2 Background and Related Work

Solving sparse linear systems,
Ax = f, (3.1)

is the most time consuming part of many applications in scientific computing.
Direct solvers, although very robust, are feasible if the system is not very large.
Iterative methods, on the other hand, are more suitable for very large sparse
systems, but lack robustness.

Preconditioning aims to improve the robustness of iterative methods by
transforming the system into

M−1Ax = M−1f, or AM−1(Mx) = f. (3.2)

Here, the preconditioner M is designed in such a way that the coefficient matrix
AM−1 or M−1A has more desirable properties. In this report, without loss of
generality, we use the term preconditioning to refer to left preconditioning. Here,
M−1 is an approximation to A−1 in the sense that the eigenvalues of M−1A are

30

clustered around 1. In addition, the action of M−1 on a vector should be cheap
and suitable for parallel computing.

An important class of preconditioners is based on approximate LU-
factorization. These ILU preconditioners are well studied and used successfully
to precondition various classes of linear systems [17, 35, 82]. There also exist
dedicated software packages that are commonly used, including the ILUT pack-
age [63]. More recently, Benzi et al. investigated the role of reordering on the
performance of ILU preconditioners [6, 7]. Banded preconditioners provide an
effective alternative to ILU-type preconditioners because of their suitability for
implementation on parallel architectures.

3.2.1 Banded preconditioners

A preconditioner M is banded if

kl ≥ i − j and ku ≥ j − i ⇒ mij 6= 0, (3.3)

where kl and ku are the lower and upper bandwidths, respectively. The half-
bandwidth, k, is defined as the maximum of kl and ku, and the bandwidth of
the matrix is equal to kl+ku+1. Banded preconditioners are generalizations of
diagonal and tridiagonal preconditioners and are shown to be effective in solving
various problems [57, 61, 77]. However, banded preconditioners alone are not
suitable as black-box preconditioners, since a dominant band does not always
exist without preprocessing. Therefore, it is necessary to reorder the rows and
columns of a matrix to pack them in a narrow central band that can be used as a
preconditioner. In general, reordering algorithms solve an optimization problem
that can be defined as one of finding a permutation of the rows and columns
that minimizes the bandwidth. Our approach is based on a generalization of
this approach in that we aim to minimize the bandwidth that encapsulates a
portion of the non-zeros in the matrix, rather than all non-zeros.

3.3 Weighted Bandwidth Reduction

3.3.1 Non-symmetric reordering

We first apply a non-symmetric row permutation of (3.1) as follows:

QAx = Qf. (3.4)

Here, Q is a permutation matrix. We consider two cases: (i) find a Q such that
the main diagonal contains as many non-zeros as possible, (ii) find a Q such
that the product of the absolute values of the diagonal entries is maximized [26].
Optionally, the second approach can provide scaling factors so that the absolute
values of the diagonal entries are equal to one and all other elements are less
than or equal to one. Scaling is applied to the original coefficient matrix as
follows:

(QD2AD1)(D
−1
1 x) = (QD2f). (3.5)

31

The first algorithm is known as maximum traversal search. Both algorithms
are implemented in the MC64[25] subroutine of the Harwell Subroutine Library
HSL[45].

3.3.2 Symmetric reordering

After the above non-symmetric reordering and optional scaling, we apply a
symmetric reordering as follows:

(PQD2AD1P
T)(PD−1

1 x) = (PQD2f). (3.6)

where P is a permutation matrix. We use Weighted Spectral Reordering (WSO)
to find a permutation that minimizes the bandwidth encapsulating a specified
fraction of the total magnitude of non-zeros in the matrix. “WSO” is described
in detail in the next section.

Weighted spectral reordering (WSO)

Traditional reordering algorithms, such as Cuthill-McKee [20] and spectral re-
ordering [4], aim to minimize the bandwidth of a matrix. The half-bandwidth
of a matrix A is defined as

BW (A) = max
i,j:A(i,j)>0

|i − j|, (3.7)

i.e., the maximum distance of a nonzero entry from the main diagonal. These
methods aim to pack the non-zeros of a sparse matrix into a narrow band around
the diagonal.

These methods do not take into account the magnitude of nonzero entries.
However, significantly degrade the performance (e.g., convergence rate) of the
algorithm at hand, particularly for matrices whose entries vary significantly in
magnitude.

To address this problem, we introduce the weighted bandwidth reduction
problem, which aims at packing the heaviest elements of the matrix in a narrow
band. This results in a less constrained formulation of the bandwidth reduction
problem. In other words, the goal of weighted bandwidth reduction is to obtain
a preconditioner with minimal bandwidth, which adequately approximates the
matrix at hand, rather than minimizing the bandwidth of the entire matrix.
More precisely, for matrix A, and specified error bound ε, we define the weighted
bandwidth reduction problem as one of finding a matrix M with minimum
bandwidth, such that

∑
i,j |A(i, j)| −∑i,j |M(i, j)|

∑
i,j |A(i, j)| ≤ ε. (3.8)

The idea behind this formulation is that, if a significant part of the matrix is
packed in a narrow band, then the rest of the non-zeros can be dropped to obtain

32

an efficient preconditioner, while keeping the effect of the resulting perturbation
within a specified bound.

In order to find a heuristic solution to the weighted bandwidth reduction
problem, we use a generalization of spectral reordering. Spectral reordering
is a linear algebraic optimization technique that is commonly used to obtain
approximate solutions to various intractable graph optimization problems [44].
It is also successfully applied to the bandwidth and envelope reduction problems
for sparse matrices [4]. The core idea of spectral reordering is to compute a
vector x that minimizes

σA(x) =
∑

i,j:A(i,j)>0

(x(i) − x(j))2, (3.9)

where ||x||2 = 1. Here, it is assumed that the matrix A is symmetric. The
vector x that minimizes σA(x) provides a mapping of the rows (and columns)
of the matrix A to a one-dimensional Euclidean space, such that pairs of rows
that correspond to non-zeros are located as close as possible to each other.
Consequently, the ordering of the entries of the vector x provides an ordering
of the matrix that significantly reduces the bandwidth.

Fiedler [29] showed that the optimal solution to this problem is given by the
eigenvector corresponding to the second smallest eigenvalue of the Laplacian
matrix, where the Laplacian L of a matrix A is defined as

L(i, j) = −1 if i 6= j ∧ A(i, j) > 0
L(i, i) = |{j : A(i, j) > 0}|. (3.10)

Note that the matrix L is positive semi-definite, so the smallest eigenvalue of
this matrix is equal to zero. The eigenvector x that minimizes σA(x) = xT Lx
is known as the Fiedler vector. The Fiedler vector of a sparse matrix can be
computed efficiently using iterative algorithms [49].

While spectral reordering is shown to be effective in bandwidth reduction,
the classical spectral approach described above ignores the magnitude of non-
zeros in the matrix. Therefore, it is not directly applicable to the weighted
bandwidth reduction problem. However, Fiedler’s result can be generalized for
the weighted case [14]. More precisely, the eigenvector x that corresponds to
the second smallest eigenvalue of the weighted Laplacian L̄ minimizes

σ̄A(x) = xT L̄x =
∑

i,j

|A(i, j)|(x(i) − x(j))2, (3.11)

where L̄ is defined as

L̄(i, j) = −|A(i, j)| if i 6= j
L̄(i, i) =

∑
j |A(i, j)|. (3.12)

We now show how weighted spectral reordering can be used to obtain a
continuous approximation to the weighted bandwidth reduction problem. For

33

this purpose, we first define the relative band-weight of a given band in the
matrix as follows:

wk(A) =

∑
i,j:|i−j|<k |A(i, j)|
∑

i,j |A(i, j)| . (3.13)

In other words, the band-weight of a matrix A, with respect to an integer k, is
equal to the fraction of the total magnitude of entries that are encapsulated in
a band of half-width k.

For a given α, 0 ≤ α ≤ 1, we define α-bandwidth as the smallest half-
bandwidth that encapsulates a fraction α of the total matrix weight, i.e.,

BWα(A) = min
k:wk(A)≥α

k. (3.14)

Observe that α-bandwidth is a generalization of half-bandwidth, i.e., when α =
1, the α-bandwidth is equal to the half-bandwidth of the matrix.

Now, for a given vector x ∈ R
n, define an injective permutation function

π(i) : {1, 2, ..., n} → {1, 2, ..., n}, such that, for 1 ≤ i, j ≤ n, x(π(i)) ≤ x(π(j))
iff i ≤ j. Here, n denotes the number of rows (columns) in matrix A. Moreover,
for fixed k, define the function δk(i, j) : {1, 2, ..., n}×{1, 2, ..., n} → {0, 1}, which
quantizes the difference between π(i) and π(j) with respect to k, i.e.,,

δk(i, j) =

{
0 if |π(i) − π(j)| ≤ k
1 else

(3.15)

Let Ā be the matrix obtained by reordering the rows and columns of A
according to π, i.e.,

Ā(π(i), π(j)) = A(i, j) for 1 ≤ i, j ≤ n. (3.16)

Then, δk(i, j) = 0 indicates that A(i, j) is inside a band of half-width k in matrix
A, while δk(i, j) = 1 indicates that it is outside this band. Defining

σ̂k(A) =
∑

i,j

|A(i, j)|δk(i, j), (3.17)

we obtain
σ̂k(A) = (1 − wk(Ā))

∑

i,j

|A(i, j)|. (3.18)

Therefore, for fixed α, the α-bandwidth of matrix Ā is equal to the smallest k
that satisfies σ̂A(k)/

∑
i,j |A(i, j)| ≤ 1 − α.

Observe that the problem of minimizing σ̄x(A) is a continuous relaxation to
the problem of minimizing σ̂k(A) for given k. Therefore, the Fiedler vector of
weighted Laplacian L̄ provides a good basis for reordering A to minimize σ̂k(A).
Consequently, for fixed ε, this vector provides a heuristic solution to the problem
of finding a reordered matrix Ā with minimum (1 − ε)-bandwidth. Once this
matrix is obtained, we compute the banded preconditioner M as follows:

M = {M(i, j) : M(i, j) = Ā(i, j) if |i − j| ≤ BW1−ε(Ā), 0 else}. (3.19)

34

Clearly, M satisfies Equation 3.8 and it is of minimal bandwidth.
Note that spectral reordering is defined specifically for symmetric matrices

and the resulting permutation is symmetric as well. Since the main focus of
this study is on non-symmetric matrices, we generalize spectral reordering to
non-symmetric matrices by computing the Laplacian matrix with respect to
|A| + |AT | instead of |A|. Note that, this formulation results in a symmet-
ric permutation for a non-symmetric matrix, which may be considered over-
constrained.

3.3.3 Summary of banded solvers

On parallel platforms, the Spike banded solver [10, 15, 23, 51, 67, 71] is shown
to have excellent scalability [59, 60] compared to ScaLapack [11]. The central
idea of SPIKE is to partition the matrix so that each processor can work on its
own part and communicates with other processors only at the end to solve a
common reduced system. The size of the reduced system is determined by the
bandwidth of the matrix and the number of partitions.

3.4 Numerical Experiments

With the objective of establishing superior runtime and convergence properties
of banded preconditioners for a broad class of problems, we perform detailed
experimental measurements.

3.4.1 Experimental setup and test problems

We obtained the test problems from the University of Florida Sparse Matrix
Collection [21]. We choose moderately large matrices with a larger number of
non-zeros (to ensure that the bandwidth reduction problem is not trivial). We
did not include those matrices that can be reordered into a narrow band using
classical reordering schemes such as Reverse Cuthill-McKee (RCM). Further, in
order to demonstrate the effectiveness of our methods, we chose matrices from
various applications that are structurally un-symmetric and have zeros on the
main diagonal. Therefore, without any reordering, they are difficult to solve
using banded or ILU type preconditioners. Description of the test problems
and related statistics are shown in Tables 3.1 and 3.2, respectively.

In all of the numerical experiments, we use the BiCGStab [78] iterative solver
with a left preconditioner. We terminate the iterations when ||rk||∞/||r0||∞ ≤
10−5. The right hand side is generated from a solution vector of all ones in
order to ensure that f ∈ span(A).

Implementation of ILU based preconditioners For each problem, we
apply ILUT to precondition the system as follows. For non-symmetric permu-
tation, we implement the most promising technique mentioned in [6, 7]. Namely,

35

Table 3.1: Description of Test Problems
Number Name Application

1 2D 54019 HIGHK Semiconductor Device Simulation
2 APPU NASA App benchmark
3 ASIC 680k Circuit Simulation Problem
4 BUNDLE1 3D Computer Vision
5 DC1 Circuit Simulation Problem
6 DW8191 Dielectric Waveguide
7 FEM 3D THERMAL1 Thermal Problem
8 FINAN512 Economic Problem
9 FP 2-D Fokker Planck Equations
10 H2O Theoretical/Quantum Chemistry Problem
11 MSC23052 Symmetric Test Matrix from MSC/NASTRAN
12 RAEFSKY5 Landing Hydrofoil Airplane FSE Model

Table 3.2: Properties of Test Properties
Number Name Dimension Non-zeros

1 2D 54019 HIGHK 54, 019 996, 414
2 APPU 14, 000 1, 853, 104
3 ASIC 680k 680, 000 2, 638, 997
4 BUNDLE1 10, 581 770, 811
5 DC1 116, 835 766, 396
6 DW8191 8, 192 41, 746
7 FEM 3D THERMAL1 17, 880 430, 740
8 FINAN512 74, 752 596, 992
9 FP 7, 548 834, 222
10 H2O 67, 024 2, 216, 736
11 MSC23052 23, 052 1, 142, 686
12 RAEFSKY4 19, 779 674, 195

36

we use the non-symmetric reordering algorithm available in MC64, with the ob-
jective of maximizing the absolute value of the product of diagonal entries. In
addition, we obtain scaling factors (D1 and D2). After non-symmetric reorder-
ing and scaling, we perform RCM reordering. Finally, we obtain the ILUT
factorization using the scaled and reordered coefficient matrix. We refer to this
method as ILUTI. For ILUTI, we report the MC64 time, RCM time, ILUT fac-
torization time, and the solution time, which involves the BiCGStab iterations.

We also use the ILUT preconditioner without any reordering or scaling,
and we refer to this approach as ILUT. For both ILUTI and ILUT, we try
various maximum fill-in (fillin) and drop (droptol) tolerance values. First, we
allow a maximum fillin of 10, 000 per row for all problems, and a droptol of
10−1 and 10−3. Note that, even though the maximum fillin per row is quite
generous, the actual fillin, see Table 3.4, due to dropping never reaches the
level of the specified maximum fillin. In addition, as a separate experiment,
we allow fillin = k, where k is the (1 − ε)-bandwidth of WSO, for a specified
bound on error ε. In this case, we do not drop any elements. By considering
various combinations of the (fillin, droptol) parameter pair, one can experiment
to find the optimal values. However, it turns out to be quite expensive to form
the factorization each time and the behavior of performance with respect to
varying these parameters is sometimes counter-intuitive. In other words, more
fillin does not always mean improving the convergence properties as previously
reported [48, 64].

Implementation of weighted bandwidth reduction based precondi-
tioner For each problem, we first reorder the system with MC64 using the
variation of the algorithm that maximizes the number of non-zeros on the main
diagonal. Next, we reorder the resulting system with spectral reordering using
MC73[46], which is available in HSL. We use the default parameters of MC73.
After obtaining the reordered system, we determine the (1−ε)-bandwidth, where
ε specifies the desired bound on the relative difference between the precon-
ditioner and the original matrix. Note that the computation of the (1 − ε)-
bandwidth requires O(nnz) + O(n) time and O(n) storage. To achieve this, we
first create a work array, w(1 : n), of dimension n. Then, for each nonzero,
aij , we update w(abs(i − j)) = w(abs(i − j)) + abs(aij). Finally, we compute a
cumulative sum in w starting from index 0 until (1 − ε)-bandwidth is reached.
The time for this process is included in the LAPACK time. In this set of exper-
iments, we choose ε = 10−4. In general, the corresponding (1 − ε)-bandwidth
can be as large as n. To prevent this, we place an upper limit k ≤ 50 if the
matrix dimension is greater than 10, 000. In Table 3.3, the achieved values of
the (1 − ε)-bandwidth are given for each of the test problems.

After determining k, the WSO scheme proceeds with the extraction of the
banded preconditioner with the bandwidth 2 × k + 1. Again, this process is
inexpensive and its cost is reported together with the LAPACK time. After
factorization of the preconditioner via an LU-scheme without pivoting, we use
it to accelerate the BiCGStab iterations.

37

Solution of linear systems For both ILUTI and WSO, we obtain a solution
to (3.6) by solving the following reordered and scaled (if any) system

Ãx̃ = f̃ . (3.20)

Here, Ã = PQD2AD1P
T , x̃ = PD−1

1 x, and f̃ = PQD2f . The corresponding
scaled residual is given by r̃ = f̃ − Ãx̃, where x̃ is the computed solution. One
can recover the residual of the original system (3.1), r, as follows:

r̃ = PQD2f − PQD2AD1P
T PD−1

1 x (3.21)

⇒ r̃ = PQD2f − PQD2Ax (3.22)

⇒ r̃ = PQD2(f − Ax) (3.23)

⇒ r̃ = PQD2r (3.24)

⇒ r = D−1
2 QT P T r̃. (3.25)

At each iteration, we check the unscaled relative residuals using (3.25). Note
that a permutation of the inverted scaling matrix is computed once and used for
recovering the unscaled residual at each iteration. This process is included in the
total time, but the cost is minimal compared to sparse matvecs and triangular
solves. During our tests, we enforce a time limit of 10 minutes, and consider
the particular run as failure if it exceeds this limit.

Table 3.3: Values of fillin f and bandwidth k for the test problems
Number Name fmax(fillin) k(α-bandwidth)

1 2D 54019 HIGHK 10, 000 2
2 APPU 10, 000 50
3 ASIC 680k 10, 000 2
4 BUNDLE1 10, 000 50
5 DC1 10, 000 50
6 DW8191 10, 000 190
7 FEM 3D THERMAL1 10, 000 50
8 FINAN512 10, 000 50
9 FP 10, 000 2
10 H2O 10, 000 50
11 MSC23052 10, 000 50
12 RAEFSKY4 10, 000 50

3.4.2 Comparative analysis

In Figure 3.1, we compare the normalized time (with respect to the banded
preconditioner) of ILUT and ILUTI using droptol = 10−1 and fillin = fmax.
ILUT fails in four of the test cases and diverges in one case, while ILUT does
not fail but diverges for three of the test problems. WSO, on the other hand,

38

Table 3.4: Number of nonzeros in matrix L + U, for various ILUT precondi-
tioners
Matrix ILUT ILUTI ILUT ILUTI ILUT ILUTI

(10−1, fmax) (10−1, fmax) (10−3, fmax) (10−3, fmax) (0, k) (0, k)

1 - 419, 835 - 1, 503, 034 1, 213, 809 1, 217, 347
2 2, 377, 197 2, 310, 466 - - - -
3 - 2, 473, 454 - 2, 783, 146 - 4, 457, 554
4 347, 395 290, 337 10, 247, 157 1, 368, 809 1, 815, 975 992, 708
5 607, 692 707, 162 1, 230, 897 1, 100, 108 - -
6 43, 702 54, 189 476, 802 1, 239, 229 1, 577, 605 1, 626, 048
7 247, 643 256, 741 762, 011 695, 664 2, 225, 895 2, 217, 004
8 472, 830 478, 568 2, 336, 798 1, 427, 693 5, 191, 052 5, 059, 937
9 - 2, 875, 303 2, 104, 578 4, 301, 556 892, 662 892, 129
10 1, 306, 190 1, 249, 849 7, 602, 509 7, 316, 812 - -
11 - 26, 402, 760 4, 515, 416 27, 939, 415 2, 417, 059 3, 294, 876
12 923, 285 858, 737 5, 166, 173 3, 911, 335 3, 194, 353 3, 296, 441

succeeds in 11 of the 12 test cases. For the other test problem, namely the
matrix MSC23052, WSO reaches a relative residual of 1.6× 10−2, while ILUT
and ILUTI either diverge or fail. WSO is the fastest method based on the total
solution time for 7 out of the 12 cases.

In Figure 3.2, we compare the normalized time (with respect to the banded
preconditioner) of ILUT and ILUTI using droptol = 10−3 and fillin = fmax.
In this case, ILUT fails or diverges for four of the test cases, and it exceeds
the time limit for one test case. ILUTI, on the other hand, diverges for three
cases and stagnates for one. WSO is the the fastest method based on the total
solution time for 9 out of the 12 cases.

In Figure 3.3, we compare the normalized time (with respect to the banded
preconditioner) of ILUT and ILUTI using droptol = 0 and fillin = k. Here,
k = kl = ku is the upper (or lower) bandwidth of the banded preconditioner.
ILUT diverges in three of the test cases, exceeds the time limit for three others,
and fails for one. ILUTI, on the other hand, diverges for two of the test cases
and exceeds the time limit for three others. WSO is the fastest method based
on the total solve time.

In Table 3.5, we present details of the experimental results. Notice that
there is no failure for WSO, whereas, ILUTI and ILUT have failures. If the
ILUT factorization returns with an error code, we indicated this by an F in the
table. If BiCGStab stagnates (indicated by Stag, or ∗), then we consider that
the method did not converge to the desired relative residual of 10−5 after 500
iterations.

In Figures 3.4-3.15, we present the residual histories for 12 systems using
ILUT, ILUTI, and WSO. The numbers of iterations for these methods are com-
parable. However, WSO is faster due to higher FLOP counts and better con-
currency.

39

 Failure

BiCGStab

ILUT

Lapack

MC73

MC64

RCM

 0

 0.5

 1

 1.5

 2

 2.5

 3

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

 N
or

m
al

iz
ed

 T
im

e

 WSO vs ILUT(droptol =0.1, fillin = n)

1						 2						 3						 4						 5						 6						 7						 8						 9						 10						 11						 12						

Figure 3.1: Comparison of performance of WSO banded preconditioner with
ILUT(fmax, 10−1)

Table 3.5: Comparison of ILUT,ILUTI, and WSO: Number of Iterations(Total
Solve Time)
Matrix ILUT ILUTI ILUT ILUTI ILUT ILUTI WSO

(10−1, f) (10−1, f) (10−3, f) (10−3, f) (0, k) (0, k)

1 F 20(0.53) F 6(0.58) 19(2.87) 1(2.13) 1(0.33)
2 12(2.22) 11(2.20) > 10min > 10min > 10min > 10min 23(1.8)
3 F 2(29.92) F 2(29.94) F 2(219.2) 7(10.32)
4 6(0.76) 7(0.31) 5(35.12) 3(2.07) 6(70.51) 2(2.64) 19(1.18)
5 18(9.5) 40(6.82) 8(12.94) 14(8.17) > 10min > 10min 25(5.54)
6 Div. Div. 500(3.71)∗ Stag. Div. 1(1.09) 16(0.52)
7 9(0.09) 11(0.16) 3(0.19) 3(0.20) 2(13.19) 2(4.94) 37(1.09)
8 5(0.12) 5(0.2) 2(0.54) 2(0.32) 2(5.6) 1(4.52) 8(1.74)
9 F Div. 1(2.1) Div. 1(22.65) Div. 1(0.7)
10 37(2.15) 37(2.4) 20(5.99) 19(6.18) > 10min > 10min 151(16.8)
11 F Div. Div. Div. Div. Div. 500(20.04)∗

12 7(0.38) 4(0.39) Div. Div. Div. 5(12.68) 6(0.65)

40

 Failure

BiCGStab

ILUT

Lapack

MC73

MC64

RCM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

 N
or

m
al

iz
ed

 T
im

e

 WSO vs ILUT(droptol =0.001, fillin = n)

	1		 	2		 	3		 	4		 	5			 	6		 	7		 	8		 	9		 	10		 	11		 	12		

Figure 3.2: Comparison of performance of WSO banded preconditioner with
ILUT(fmax, 10−3)

41

Failure

BiCGStab

ILUT

Lapack

MC73

MC64

RCM

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

IL
U

T
IL

U
T

I
W

SO

 N
or

m
al

iz
ed

 T
im

e

 WSO vs ILUT(droptol =0.0, fillin = bw)

1			 2			 3			 4			 5			 6			 7			 8			 9			 10			 11			 12			

Figure 3.3: Comparison of performance of WSO banded preconditioner with
ILUT(k, 0.0)

42

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

 0 5 10 15 20

||r
k|

| ∞
 /

||r
0|

| ∞

Iterations

WSO
ILUT(bw,∞)

ILUTI(n,10-1)
ILUTI(n,10-3)
ILUTI(bw,∞)

Figure 3.4: Residual history of WSO banded preconditioner for problem
2D 54019 HIGHK

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 5 10 15 20 25

||r
k|

| ∞
 /

||r
0|

| ∞

Iterations

WSO
ILUT(n,10-1)

ILUTI(n,10-1)

Figure 3.5: Residual history of WSO banded preconditioner for problem Appu

43

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 1 2 3 4 5 6 7

||r
k|

| ∞
 /

||r
0|

| ∞

Iterations

WSO
ILUTI(n,10-1)
ILUTI(n,10-3)
ILUTI(bw,∞)

Figure 3.6: Residual history of WSO banded preconditioner for problem
ASIC 680k

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 2 4 6 8 10 12 14 16 18 20

||r
k|

| ∞
 /

||r
0|

| ∞

Iterations

WSO
ILUT(n,10-1)
ILUT(n,10-3)
ILUT(bw,∞)

ILUTI(n,10-1)
ILUTI(n,10-3)
ILUTI(bw,∞)

Figure 3.7: Residual history of WSO banded preconditioner for problem BUN-
DLE1

44

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

 0 5 10 15 20 25 30 35 40

||r
k|

| ∞
 /

||r
0|

| ∞

Iterations

WSO
ILUT(n,10-1)
ILUT(n,10-3)

ILUTI(n,10-1)
ILUTI(n,10-3)

Figure 3.8: Residual history of WSO banded preconditioner for problem DC1

10-15

10-10

10-5

100

105

1010

1015

 0 100 200 300 400 500 600

||r
k|

| ∞
 /

||r
0|

| ∞

Iterations

WSO
ILUT(n,10-3)
ILUTI(bw,∞)

Figure 3.9: Residual history of WSO banded preconditioner for problem DW8192

45

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

 0 5 10 15 20 25 30 35 40

||r
k|

| ∞
 /

||r
0|

| ∞

Iterations

WSO
ILUT(n,10-1)
ILUT(n,10-3)
ILUT(bw,∞)

ILUTI(n,10-1)
ILUTI(n,10-3)
ILUTI(bw,∞)

Figure 3.10: Residual history of WSO banded preconditioner for problem
FEM 3D THERMAL

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 1 2 3 4 5 6 7 8

||r
k|

| ∞
 /

||r
0|

| ∞

Iterations

WSO
ILUT(n,10-1)
ILUT(n,10-3)
ILUT(bw,∞)

ILUTI(n,10-1)
ILUTI(n,10-3)
ILUTI(bw,∞)

Figure 3.11: Residual history of WSO banded preconditioner for problem FI-
NAN512

46

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 0.2 0.4 0.6 0.8 1

||r
k|

| ∞
 /

||r
0|

| ∞

Iterations

WSO
ILUT(n,10-3)
ILUT(bw,∞)

Figure 3.12: Residual history of WSO banded preconditioner for problem FP

10-6

10-5

10-4

10-3

10-2

10-1

100

101

 0 20 40 60 80 100 120 140 160

||r
k|

| ∞
 /

||r
0|

| ∞

Iterations

WSO
ILUT(n,10-1)
ILUT(n,10-3)

ILUTI(n,10-1)
ILUTI(n,10-3)

Figure 3.13: Residual history of WSO banded preconditioner for problem H2O

47

10-3

10-2

10-1

100

101

102

 0 100 200 300 400 500 600

||r
k|

| ∞
 /

||r
0|

| ∞

Iterations

WSO

Figure 3.14: Residual history of WSO banded preconditioner for problem
MSC23052

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 1 2 3 4 5 6 7

||r
k|

| ∞
 /

||r
0|

| ∞

Iterations

WSO
ILUT(n,10-1)

ILUTI(n,10-1)
ILUTI(bw,∞)

Figure 3.15: Residual history of WSO banded preconditioner for problem RAEF-
SKY4

48

Chapter 4

A Tearing-based Hybrid

Parallel Banded Linear

System Solver

4.1 Introduction

Numerical handling of partial differential equations (PDEs) plays a crucial role
in modeling of physical processes. It involves discretization of these PDEs using,
for example, Finite Difference or Finite Element methods and results in nonlin-
ear systems of equations whose solution yields at each iteration a large sparse
linear system. These systems can often be reordered using Reverse Cuthill-
McKee [20, 53] or Spectral [29, 30, 72] reorderings into banded or low-rank
perturbations of banded linear systems and solved using direct or precondi-
tioned iterative methods in which the preconditioner is a banded matrix. In
this Chapter we propose a novel hybrid parallel algorithm for solving banded
linear systems and state conditions that guarantee its convergence.

The parallel solution of banded linear systems has been considered by many
authors [19, 23, 24, 34, 37, 47, 55, 59, 60, 67, 81]. The overarching strategy
consists of two main stages: (i) the coefficient matrix is reordered or modified
so that it consists of several independent blocks, but which are interconnected
by a single block. Certain algorithms produce this single block as a Schur com-
plement, others produce different reduced systems; (ii) once this reduced system
corresponding to this single block is solved, the original problem decomposes into
several independent smaller problems facilitating almost perfect parallelism in
retrieving the rest of the solution vector.

Our approach is different from the algorithms cited above. Its main idea
was first proposed by Sameh et al., [54] in which the study was restricted to
diagonally dominant symmetric positive definite linear systems. In this chapter
we generalize it to non-symmetric linear systems without the requirement of

49

diagonal dominance. Furthermore, we show how to precondition the implicit
balance system.

The rest of this chapter is organized as follows: First, we introduce the al-
gorithm by showing how it “tears” the original system. Second, we analyze
the conditions that guarantee the non-singularity of the balance system for any
nonsingular original system. Further, we show that if the original system is
Symmetric Positive Definite (SPD) then the much smaller balance system is
SPD as well. Third, we discuss preconditioned iterative methods for solving the
balance system, the Conjugate Gradient (CG) for the SPD case, and the Stabi-
lized Bi-Conjugate Gradient (BiCGStab) for the non-symmetric case. We call
our algorithm Domain Decomposition CG (DDCG) or Domain Decomposition
BiCGStab (DDBiCGStab) for symmetric and non-symmetric linear systems,
respectively. Finally, we present numerical experiments and pseudocode.

4.2 Partitioning

We are interested in solving linear systems

Ax = f (4.1)

where A ∈ R
n×n and x, f ∈ R

n. Let A = [aij] have a lower and upper band-
widths of kd, in other words |i−j| < kd � n. We can rewrite our banded linear
system (4.1) using a block tridiagonal matrix A, blocked vectors x and f.

For clarity of presentation, we illustrate the partitioning and tearing scheme
using three partitions (p = 3). For the same reason some of our theorems
are proven only for three partitions. Also, we assume that all the partitions
are of equal size, m, and that all the overlaps are of identical size τ = kd.
Generalization to the case of p > 3 partitions of different sizes is straightforward.

The banded matrix A and vectors x and f can be written as

A =

A11 A12

A21 A22 A23

A32 A33 A34

A43 A44 A45

A54 A55 A56

A65 A66 A67

A76 A77

, x =

x1

x2

x3

x4

x5

x6

x7

,

and f =

f1
f2
f3
f4
f5
f6
f7

(4.2)

50

Here, Aij , xi and fi for i, j = 1, . . . , 7 are blocks of appropriate sizes. Let us
define the partitions of A, delineated by lines in the illustration of A in (4.2), as

Ak =

A
(k)
11 A

(k)
12

A
(k)
21 A

(k)
22 A

(k)
23

A
(k)
32 A

(k)
33

 for k = 1, 2, 3 (4.3)

If η = 2(k − 1), then the blocks A
(k)
µν = Aη+µη+ν , for µ, ν = 1, 2, 3, except for

the top left µ = ν 6= 1 block of the last and middle partition, and bottom right
µ = ν 6= 3 block of the first and middle partition. For these blocks the following

equality holds A
(k−1)
33 + A

(k)
11 = Aη+1,η+1. The exact choice of splitting A

(k−1)
33

and A
(k)
11 will be discussed below.

Thus, we can rewrite (4.1) as 3 independent linear systems, k = 1, 2, 3,

A
(k)
11 A

(k)
12

A
(k)
21 A

(k)
22 A

(k)
23

A
(k)
32 A

(k)
33

x
(k)
1

x
(k)
2

x
(k)
3

 =

(1 − αk−1) fη+1 − yk−1

fη+2

αkfη+3 + yk

 (4.4)

where yk and αk are yet to be specified. Now, we need to choose the scaling
parameters 0 ≤ α1, α2 ≤ 1 and the adjustment vector yT =

(
yT

1 ,yT
2

)
so that

the solution of (4.4) coincides with the respective parts of the solution of (4.1).
We will achieve this if

x
(1)
3 = x

(2)
1 and x

(2)
3 = x

(3)
1 (4.5)

Note that α0 = 0, α3 = 1, y0 = y3 = 0, and without loss of generality, we
choose α1 = α2 = 0.5. Let

A−1
k =

B
(k)
11 B

(k)
12 B

(k)
13

B
(k)
21 B

(k)
22 B

(k)
23

B
(k)
31 B

(k)
32 B

(k)
33

 (4.6)

we can rewrite (4.4) as

x
(k)
1

x
(k)
2

x
(k)
3

 =

B
(k)
11 B

(k)
12 B

(k)
13

B
(k)
21 B

(k)
22 B

(k)
23

B
(k)
31 B

(k)
32 B

(k)
33

(1 − αk−1)fη+1 − yk−1

fη+2

αkfη+3 + yk

 (4.7)

obtaining
{

x
(k)
1 = B

(k)
11 ((1 − αk−1)fη+1 − yk−1) + B

(k)
12 fη+2 + B

(k)
13 (αkfη+3 + yk)

x
(k)
3 = B

(k)
31 ((1 − αk−1)fη+1 − yk−1) + B

(k)
32 fη+2 + B

(k)
33 (αkfη+3 + yk)

(4.8)
Then, using (4.5) and (4.8) we obtain

(
B

(ζ)
33 + B

(ζ+1)
11

)
yζ = gζ + B

(ζ)
31 yζ−1 + B

(ζ+1)
13 yζ+1 (4.9)

51

for ζ = 1, 2, where

gζ =
(
(αζ−1 − 1)B

(ζ)
31 ,−B

(ζ)
32 , (1 − αζ) B

(ζ+1)
11 − αζB

(ζ)
33 , B

(ζ+1)
12 , αζ+1B

(ζ+1)
13

)

fη−1

fη
fη+1

fη+2

fη+3

(4.10)
Finally, letting gT =

(
gT

1 ,gT
2

)
, the adjustment vector y can be found by solving

the balance system
My = g (4.11)

where

M =

(
B

(1)
33 + B

(2)
11 −B

(2)
13

−B
(2)
31 B

(2)
33 + B

(3)
11

)
(4.12)

Once y is found, we can solve the three independent linear systems (4.4) in
parallel. Next, we focus our attention on solving (4.11). First, we note that the
matrix M is not available explicitly. Thus using a direct method to solve the
balance system (4.12) is not possible and hence we need to resort to iterative
schemes. Our iterative methods of choice for M are CG and BiCGStab, respec-
tively. However, to use them, we must be able to compute the initial residual
r0 = g−My0 and compute matrix vector products of the form q = Mp. Also,
we need to determine what conditions A and the partitions Ak must satisfy for
M to be nonsingular. This will be addressed in the next section.

As a final note, we mention that in general (for arbitrary p) the balance
system is block tridiagonal of the form

B
(1)
33 + B

(2)
11 −B

(2)
13

−B
(2)
31 B

(2)
33 + B

(3)
11 −B

(3)
13

. . .

−B
(p−2)
31 B

(p−2)
33 + B

(p−1)
11 −B

(p−1)
13

−B
(p−1)
31 B

(p−1)
33 + B

(p)
11

(4.13)

4.3 The Balance System

4.3.1 The symmetric positive definite case

In this section, we assume that A is SPD, and investigate the conditions under
which the balance system is also SPD.

Theorem 1 If partitions Ak in (4.3) are SPD for k = 1, . . . , p then the coeffi-
cient matrix M , of the balance system in (4.11), is SPD.

52

Let p = 3. Notice that if Ak is SPD then A−1
k is also SPD. Let

QT =

(
I 0 0
0 0 −I

)
. (4.14)

Pre-multiplying (4.6) by P T and post-multiplying by P , we obtain

QT A−1
k Q =

(
B

(k)
11 −B

(k)
13

−B
(k)
31 B

(k)
33

)
, (4.15)

which is also SPD. However, since the matrix M can be written as the sum

M = M1 + M2 + M3 (4.16)

=

(
B

(1)
33 0
0 0

)
+

(
B

(2)
11 −B

(2)
13

−B
(2)
31 B

(2)
33

)
+

(
0 0

0 B
(3)
11

)
, (4.17)

zT Mz > 0 for any nonzero z.
Let A be SPD and DD, then we can find a splitting that results in SPD/DD

Ak, which guarantees that M is SPD. This result is contained in the following
theorem.

Theorem 2 If A in (4.1) is SPD and DD then the partitions Ak in (4.3) can
be chosen such that they inherit the same properties. Further, the coefficient
matrix M , of the resulting balance system in (4.11), is SPD.

Since A is DD, we only need to obtain a splitting that ensures the diagonal
dominance of the overlapping parts. Let e = [1, . . . , 1]T , ei be the i-th column
of the identity, |.| denote the absolute value, diag(.) and offdiag(.) denote the
diagonal and off diagonal elements, respectively. Now let the elements of the

diagonal matrices H
(1)
ζ = [h

(ζ,1)
ii] and H

(2)
ζ+1 = [h

(ζ+1,2)
ii], of appropriate sizes, be

given by

h
(ζ,1)
ii = eT

i |A(ζ)
32 |e +

1

2
eT

i |offdiag(A
(ζ)
33 + A

(ζ+1)
11)|e (4.18)

h
(ζ+1,2)
ii = eT

i |A(ζ+1)
12 |e +

1

2
eT

i |offdiag(A
(ζ)
33 + A

(ζ+1)
11)|e (4.19)

(4.20)

respectively. Notice that h
(ζ,1)
ii and h

(ζ+1,2)
ii are sums of absolute values of all

off diagonal elements, with elements in the overlap being halved, in the i-th row
to the left and right of the diagonal, respectively. Moreover, let the difference
between the positive diagonal elements and the sums of absolute values of all
off diagonal elements in the same row be given by:

Dζ = diag(A
(ζ)
33 + A

(ζ+1)
11) − H

(1)
ζ − H

(2)
ζ+1. (4.21)

53

Now, if

A
(ζ)
33 = H

(1)
ζ +

1

2
Dζ +

1

2
offdiag(A

(ζ)
33 + A

(ζ+1)
11), and

A
(ζ+1)
11 = H

(2)
ζ+1 +

1

2
Dζ +

1

2
offdiag(A

(ζ)
33 + A

(ζ+1)
11),

(4.22)

it is easy to verify that A
(ζ)
33 +A

(ζ+1)
11 = A2ζ+1,2ζ+1 and each Ak, for k = 1, . . . , p,

is SPD/DD. Consequently, if (4.2) is SPD/DD so are the partitions Ak and by
Theorem 1, the balance system is guaranteed to be SPD.

4.3.2 The non-symmetric case

Next, if A is just a nonsingular non-symmetric matrix, we explore conditions
under which (4.12) becomes nonsingular.

Theorem 3 Let the matrix A in (4.1) be any nonsingular matrix with partitions
Ak, k = 1, . . . , p, in (4.3) that are also nonsingular. Then the coefficient matrix
M , of the balance system in (4.11), is nonsingular.

Let p = 3. Notice that we can write

A =

A1

0m−2τ

A3

+

0m−τ

A2

0m−τ

 (4.23)

Next, let the nonsingular matrix C be given by,

C =

A−1
1

Im−2τ

A−1
3

A

Im−τ

A−1
2

Im−τ

=

Im

0m−2τ

Im

Im−τ

A−1
2

Im−τ

+

A−1
1

Im−2τ

A−1
3

0m−τ

Im

0m−τ

(4.24)

54

where Im and 0m are the identity and zero matrices of order m, respectively.
Using (4.23), (4.24), (4.6), we obtain

C =

Iτ

Im−2τ

B
(2)
11 B

(2)
12 B

(2)
13

0 0m−2τ 0

B
(2)
31 B

(2)
32 B

(2)
33

Im−2τ

Iτ

+

0τ 0 B
(1)
13

0 0m−2τ B
(1)
23

0 0 B
(1)
33

Im−2τ

B
(3)
11 0 0

B
(3)
21 0m−2τ 0

B
(3)
31 0 0τ

=

Iτ 0 B
(1)
13

0 Im−2τ B
(1)
23

0 0 B
(1)
33 + B

(2)
11 B

(2)
12 B

(2)
13

0 Im−2τ 0

B
(2)
31 B

(2)
32 B

(2)
33 + B

(3)
11 0 0

B
(3)
21 Im−2τ 0

B
(3)
31 0 Iτ

where the 0 matrices without subscripts are considered to be of appropriate
sizes. Using the permutation matrix

P T =

Iτ

Im−2τ

Im−2τ

Im−2τ

Iτ

Iτ

−Iτ

(4.25)

55

we can write

P T CP =

Iτ B
(1)
13

Im−2τ B
(1)
23

Im−2τ

Im−2τ −B
(3)
21

Iτ −B
(3)
31

B
(2)
12 B

(1)
33 + B

(2)
11 −B

(2)
13

−B
(2)
32 −B

(2)
31 B

(2)
33 + B

(3)
11

(4.26)
or rewriting (4.26) as a block 2×2 matrix, with blocks delineated by lines above,
we obtain

P T CP =

(
I3m−4τ Z1

ZT
2 M

)
. (4.27)

Consider the eigenvalue problem

(
I3m−4τ Z1

ZT
2 M

)(
u1

u2

)
= λ

(
u1

u2

)
. (4.28)

Pre-multiplying the first block row of (4.28) by ZT
2 and noticing that ZT

2 Z1 = 0
we obtain

(1 − λ)ZT
2 u1 = 0 (4.29)

Hence, either λ = 1 or ZT
2 u1 = 0. If λ 6= 1, then the second block row of (4.28)

yields
Mu2 = λu2 (4.30)

Thus, the eigenvalues λ of C are either 1 or are identical to those of the balance
system, and we can write:

λ(C) = λ(P T CP) ∈ {1, λ(M)}. (4.31)

Hence, since C is nonsingular, the balance system is also nonsingular.
Notice that (4.24) and (4.31) suggest a powerful preconditioning technique

for the banded linear system (4.1).
Next, we explore conditions that the nonsingular matrix A must satisfy, so

that we are guaranteed that there exists a splitting that results in nonsingular
partitions Ak. We also provide a formula for computing such a splitting.

56

Theorem 4 If matrix A in (4.1) is nonsingular, its symmetric part
H = 1

2 (A + AT) is symmetric positive semidefinite (SPSD) and
N (H) ∩ N (B) = � for B = B1 = BT

2 where

B1 =

A
(2)
11

A
(2)
21

A
(3)
11

A
(3)
21

. . .

A
(p)
11

A
(p)
21

, BT
2 =

A
(2)T

11

A
(2)T

12

A
(3)T

11

A
(3)T

12

. . .

A
(p)T

11

A
(p)T

12

,

(4.32)
then there exists a splitting such that the partitions Ak in (4.3) for k = 1, . . . , p
are nonsingular.

Let p = 3. Let Ã be the block diagonal matrix in which the blocks are the
partitions Ak,

Ã =

A
(1)
11 A

(1)
12

A
(1)
21 A

(1)
22 A

(1)
23

A
(1)
32 A

(1)
33

A
(2)
11 A

(2)
12

A
(2)
21 A

(2)
22 A

(2)
23

A
(2)
32 A

(2)
33

A
(3)
11 A

(3)
12

A
(3)
21 A

(3)
22 A

(3)
23

A
(3)
32 A

(3)
33

(4.33)

and the nonsingular permutation matrix JT be defined as

JT =

Iτ

Im−2τ

Iτ Iτ

Im−2τ

Iτ Iτ

Im−2τ

Iτ

0 Iτ

0 Iτ

(4.34)

57

Then, since rank(Ã) = rank(JT ÃJ), where

JT ÃJ =

A
(1)
11 A

(1)
12

A
(1)
21 A

(1)
22 A

(1)
23

A
(1)
32 A

(1)
33 + A

(2)
11 A

(2)
12 A

(2)
11

A
(2)
21 A

(2)
22 A

(2)
23 A

(2)
21

A
(2)
32 A

(2)
33 + A

(3)
11 A

(3)
12 A

(3)
11

A
(3)
21 A

(3)
22 A

(3)
23 A

(3)
21

A
(3)
32 A

(3)
33

A
(2)
11 A

(2)
12 A

(2)
11

A
(3)
11 A

(3)
12 A

(3)
11

.

(4.35)
This can be written as a block 2× 2 matrix,

JT ÃJ =

(
A B̂1

B̂2
T

K

)
, (4.36)

where B̂1 and B̂2 contain B1 and B2, respectively, with additional zeros at the

top and bottom. Notice that using splitting A
(k)
11 = 1

2 (Aη+1η+1 +AT
η+1η+1)+βI

and A
(k−1)
33 = 1

2 (Aη+1η+1 −AT
η+1η+1)−βI we can choose β so as to ensure that

B̂1 and B̂2 are of full rank and K is SPD. Thus, using Theorem 3.4 on p. 17
of [8], we conclude that Ã has full rank and consequently the partitions Ak are
nonsingular.

Notice that the condition B = B1 = BT
2 in the theorem above is not as

restrictive as it looks. Recalling that the original matrix is banded, it is easy

to see that matrices A
(k)
12 and A

(k)
21 are almost completely zero except for small

parts in the respective corners of size no larger than the overlap. This condition
can be viewed as a requirement of symmetry surrounding the overlaps.

Let us now focus on two special cases. First, if the matrix A is SPD the
conditions of the above theorem are immediately satisfied and we obtain the
following Corollary.

Corollary 1 If the matrix A in (4.1) is SPD then there exists a splitting (as
described in Theorem 4) such that the partitions Ak in (4.3) for k = 1, . . . , p are
nonsingular and consequently the coefficient matrix M , of the balance system in
(4.11), is nonsingular.

Second, if the symmetry requirement is dropped in Theorem 2, then combining
the results of Theorems 2 and 3 we obtain the following.

Corollary 2 If A in (4.1) is DD (hence nonsingular) then the partitions Ak

in (4.3) can be chosen such that they are also DD (hence nonsingular) for k =
1, . . . , p and consequently the coefficient matrix M , of the balance system in
(4.11), is nonsingular.

58

4.4 The Hybrid Solver of the Balance System

Let us show how we can compute the initial residual r0 needed to start either
CG or BiCGStab for solving the balance system. Notice that we can rewrite
(4.7) as

x

(k)
1

x
(k)
2

x
(k)
3

 =

h
(k)
1

h
(k)
2

h
(k)
3

+

ȳ
(k)
1

ȳ
(k)
2

ȳ
(k)
3

 , (4.37)

where

h
(k)
1

h
(k)
2

h
(k)
3

 = A−1

k

(1 − αk−1)fη+1

fη+2

αkfη+3

 ,

ȳ
(k)
1

ȳ
(k)
2

ȳ
(k)
3

 = A−1

k

−yk−1

0
yk

(4.38)
and the residual can be written as

r = g− My =

x
(2)
1 − x

(1)
3

x
(3)
1 − x

(2)
3

...

x
(p)
1 − x

(p−1)
3

=

h
(2)
1 − h

(1)
3

h
(3)
1 − h

(2)
3

...

h
(p)
1 − h

(p−1)
3

+

ȳ
(2)
1 − ȳ

(1)
3

ȳ
(3)
1 − ȳ

(2)
3

...

ȳ
(p)
1 − ȳ

(p−1)
3

(4.39)
Let the initial guess be given by y0 = 0, then we have

r0 = g =

h
(2)
1 − h

(1)
3

h
(3)
1 − h

(2)
3

...

h
(p)
1 − h

(p−1)
3

. (4.40)

Thus, to compute the initial residual we must solve the p independent linear
systems and subtract the bottom part of the solution vector of partition ζ,

h
(ζ)
3 , from the top part of the solution vector of partition ζ + 1, h

(ζ+1)
1 , for

ζ = 1, . . . , p − 1.
Finally, to compute matrix-vector products, q = Mp, using (4.39) and (4.40)

we obtain

My = g− r = r0 − r =

ȳ
(1)
3 − ȳ

(2)
1

ȳ
(2)
3 − ȳ

(3)
1

...

ȳ
(p−1)
3 − ȳ

(p)
1

(4.41)

Hence, we can compute matrix-vector products Mp, for any vector p, in a
similar fashion as the initial residual using (4.41) and (4.38).

The modified iterative methods (CG and BiCGStab) used to solve (4.11) are
the standard iterative methods with initial residual and matrix-vector products
computed using (4.40) and (4.41), respectively.

59

4.5 Preconditioning the balance system

We precondition the balance system using a block diagonal matrix of the form,

M̃ =

B̃
(1)
33 + B̃

(2)
11

. . .

B̃
(p−1)
33 + B̃

(p)
11

 (4.42)

where B
(ζ)
33 ≈ B̃

(ζ)
33 = A

(ζ)
33

−1
and B

(ζ+1)
11 ≈ B̃

(ζ+1)
11 = A

(ζ+1)
11

−1
. Here, we are

taking advantage of the fact that the elements of the inverse of a banded matrix
decay as we move away from the diagonal, e.g. [22]. Also such decay becomes
more pronounced as the banded matrix is more diagonally dominant. Using
Sherman-Morrison-Woodbury formula, [36], we can write

(B̃
(ζ)
33 + B̃

(ζ+1)
11)−1 = (A

(ζ)
33

−1
+ A

(ζ+1)
11

−1
)−1 = A

(ζ)
33 (A

(ζ)
33 + A

(ζ+1)
11)−1A

(ζ+1)
11 =

= A
(ζ)
33 − A

(ζ)
33 (A

(ζ)
33 + A

(ζ+1)
11)−1A

(ζ)
33 (4.43)

where we prefer the last equality as it avoids extra interprocessor communi-

cation, assuming that the original overlapping block A
(ζ)
33 + A

(ζ+1)
11 is stored

separately on processor ζ. Consequently, to precondition (4.11) we only need

to multiply vectors with A
(ζ)
33 , and solve small linear systems with coefficient

matrices A
(ζ)
33 + A

(ζ+1)
11 .

4.6 Numerical Experiments

We compare the performance of our hybrid solver with both preconditioned
iterative solvers as well as direct solvers. Consequently, in this section, we
compare DDCG and DDBiCGStab with preconditioned CG and BiCGStab, as
well as LAPACK [1], and ScaLapack [12]. These solvers have been tested on a
variety of linear systems. Here we present only few examples whose results are
typical of a much larger collection. The six test problems are banded systems
extracted from two large sparse matrices, selected from The University of Florida
Sparse Matrix Collection [21] (see Table 4.1). First, these two matrices Ei

for i = 1, 2 are reordered using the Reverse Cuthill-McKee scheme and three
central bands of bandwidths 129, 257, and 513 are extracted from them. The
diagonal elements of these banded systems are then perturbed so that the three
symmetric matrices Sj are SPD/DD with a degree of DD v 1.008, and the other
three non-symmetric matrix Nj are made nonsingular. Finally, all six matrices
are equilibrated to produce condition numbers of v 7.6E + 3 for the matrices
Sj , and v 4.1E + 6 for the matrices Nj .

Notice that diagonal dominant is not a requirement for the convergence of
DDCG; we only need the partitions to be SPD (see Theorem 1), nevertheless we
ensure diagonal dominant to give an extra advantage to the block-Jacobi (BJ)
preconditioned CG. Also, even though we did not prove the convergence of our

60

@
@

@
@

@
@

@
@

@
@

@
@Pn

...

P1

P0

Figure 4.1: Distribution of a banded linear system across various processors.

hybrid solver assuming only non-singularity of the linear system, see Theorems
3 and 4, our hybrid solver proved to be successful in handling such a case.

Table 4.1: Description of test matrices

Matrix Size Nonzeros Symm. Application
E1: AMD/G3 circuit 1,585,478 7,660,826 yes Circuit Simulation
E2: Sandia/ASIC 680k 682,862 4,001,317 no Circuit Simulation

Our experiments are performed on an SGI Altix (with Intel Itanium 2 pro-
cessors) at the National Center for Supercomputing Applications (NCSA) of
the University of Illinois at Urbana-Champaign. For every run, we state the
time <seconds>, <# of iterations> of the iterative scheme, and the 2-norm of
the residual < ||r||2 = ||f − Ax||2 >. In all experiments, the exact solution is
x∗ = e, with the right-hand-side chosen as the multiplication of either Sj or Nj

with e. The six experiments are performed on 1, 2, 4, 8, 16 and 32 processors.
The stopping criteria (s.c.) for the classical CG and BiCGstab are chosen as
the relative residual ||r||2/||r0||2 ≤ 10−4, 10−6, 10−10, while for our hybrid solver
the stopping criterion is chosen as ||r||2/||r0||2 ≤ 10−4. We also terminate all
solvers if the number of iterations exceeds the size of the system to be solved.

For parallel implementation, the banded matrices and the corresponding
right-hand-sides are distributed by blocks of rows across the processors (see
Fig. 4.1). BJ preconditioning is chosen for CG and BiCGstab as it allows per-
fect parallelism in the preconditioning stage. It is worth mentioning that BJ
preconditioning of CG and BiCGstab requires solving independent linear sys-
tems each of order equals to the number of rows on the current processor, while
preconditioning our hybrid solver requires solving independent linear systems
of the much smaller order which is equal to the bandwidth.

It can be seen from the experiments that preconditioning the balance sys-
tem in DDCG and DDBiCGStab schemes significantly reduces the number of
iterations. As mentioned earlier, this a great benefit for very little cost. Figures
4.2 and 4.3 show the 2-norms of the final residuals achieved by all four solvers.
the lowest 2-norm of the residuals was achieved by our hybrid solver and ScaLa-

61

pack even though our stopping criterion for solving the balance system is only
||r||2/||r0||2 ≤ 10−4. Requiring such low residuals from the classical CG and
BiCGstab would have consumed much more time than illustrated in 4.4 and
4.5. These two figures illustrate the excellent performance of our parallel hybrid
solver which is enhanced as the bandwidth increases.

Figure 4.2: Achieved residual for different methods and stopping criteria on
G3 circuit

Figure 4.3: Achieved residual for different methods and stopping criteria on
ASIC 680k

62

Figure 4.4: Performance on 8 processors with different stopping criteria on
G3 circuit

Figure 4.5: Performance on 8 processors for different stopping criteria on
ASIC 680k

The overall behavior of the different algorithms is shown in Fig. 4.6 for
banded systems extracted from the symmetric matrix G3 circuit, see [6]. Here,
we show the speed improvement, or deterioration, compared to ScaLapack as the
number of processors increase from 2 to 32. We note that: (i) ScaLapack out-
performs LAPACK when the number of processors is 4 or higher, (ii) depending
on the effectiveness of the preconditioner, preconditioned CG and BiCGstab can
outperform ScaLapack, and perform similarly to our un-preconditioned hybrid
solver, and (iii) our preconditioned hybrid solver outperforms all the rest as well
as obtain a much smaller final residual norm. These remarks are also valid for

63

our experiments with the non-symmetric matrices extracted from ASIC 680k
matrix, see [6].

Finally, scalability of the algorithms for the symmetric and non-symmetric
systems is shown in Fig. 4.7 & 4.8, respectively.

Figure 4.6: Performance of CG (stopping criteria<10E-10), DDCG and ScaLa-
pack on G3 circuit

Figure 4.7: Scalability of DDCG on G3 circuit for 32 processors.

64

Figure 4.8: Scalability of DDBiCGStab on ASIC 680k for 32 processors.

65

4.7 Pseudocode

1. Partition the linear system according to (4.3) and (4.22) on p processors.
2. Compute r0 = g using (4.40) by solving p linear systems in the first term of (4.38).

3a. Start Modified Krylov method (initial guess y0 = 0 and resid. r0 have been computed)
Modified Prec. CG (see p. 15 in [5]) Modified Prec. BiCGStab (see p. 27 in [5])
for i=1,2,... for i=1,2,...

solve M̃zi−1 = ri−1 ρi−1 = r̃T ri−1 (if ρi−1 = 0 failed)
ρi−1 = rT

i−1zi−1 if i=1 then
if i = 1 then pi = ri−1

p1 = z0 else
else βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)

βi−1 = ρi−1/ρi−2 pi = ri−1 + βi−1(pi−1 − ωi−1vi−1)
end end

qi = modified multiply(M,pi) solve M̃ p̂ = pi

αi = ρi−1/p
T
i qi vi = modified multiply(M, p̂)

yi = yi−1 + αipi αi = ρi−1/r̃
T vi, s = ri−1 − αivi

ri = ri−1 − αiqi if (||s||2 < ε) then xi = xi−1 + αip̂ stop

check convergence solve M̃ ŝ = s
end t = modified multiply(M, ŝ)

ωi = tT s/tT t, ri = s− ωit
xi = xi−1 + αip̂i + ωiŝ
check convergence (if ωi 6= 0 proceed)

end
3b. Notice that since ri, yi are composed of p − 1 blocked components, the same applies

to pi = [p
(i)T

1 , . . . ,p
(i)T

p−1]
T . Suppose that each of these block components is located

on a separate processor (one processor remains idle) then modified multiply steps are:

exchange (processors k = 2, . . . , p − 1 send p
(i)
k to k − 1 and k = 1, . . . , p − 2 send

p
(i)
k to k + 1) to construct right-hand-side in the second term of (4.38); solution of the

system in the second term of (4.38); computation of the result using (4.41), preceded

by communication where processors k = 2, . . . , p − 1 send ȳ
(k)
1 to k − 1.

4. Solve (4.1) by solving p independent linear systems (4.4), where y is known.

66

Chapter 5

Scalability of Parallel

Programs

5.1 Introduction

Faced with the challenge of reducing the power consumption of conventional
microprocessors while delivering increased performance, microprocessor ven-
dors have leveraged increasing transistor counts to deliver multicore processors.
Packaging multiple, possibly simpler cores, operating at lower voltage results
in lower power consumption, a primary motivation for multicore processors. A
byproduct of this is that parallelism becomes the primary driver for perfor-
mance. Indeed, multicore designs with up to 16 cores are currently available,
and some with up to 80 cores have been prototyped.

Multicore processors bring tremendous raw performance to the desktop.
Harnessing this raw compute power in real programs, ranging from desktop
applications to scientific codes is critical to their commercial and technological
viability. Beyond the desktop, the packaging and power characteristics of mul-
ticore processors make it possible to integrate a large number of such processors
into a parallel ensemble. This has the potential to realize the long-held vision of
truly scalable parallel platforms. Indeed, systems with close to hundred thou-
sand cores are likely to become available in the foreseeable future. The peak
performance of such systems is anticipated to be several petaFLOPS.

The ability to build scalable parallel systems with very large number of
processing cores puts forth a number of technical challenges. With the large
component counts, the reliability of such systems is a major issue. System soft-
ware support must provide a reliable logical machine view to the programmer,
while supporting efficient program execution. Programming models and lan-
guages must allow a programmer to express concurrency and interactions in a
manner that maximizes concurrency, minimizes overheads, while at the same
time providing high-level abstractions of the underlying hardware. Runtime
systems must continually monitor faults and application performance, while

67

providing diagnostic, prognostic, and remedial services. While all of these are
important issues, in our belief, there is an even more fundamental question – are
there algorithms that can efficiently scale to such configurations, given hardware
parameters, limitations, and overheads? The answer to this question, and the
methodology by which answers this question are critical.

Estimating the performance of a program on a larger hardware configura-
tion from known performance on smaller configurations and smaller problem
instances is generally referred to as scalability analysis. Indeed, this is precisely
the problem we are faced with, when we try to assess applications and algo-
rithms capable of efficiently utilizing emerging large-scale parallel platforms.
Scalability analysis has been well-studied in the literature – with automated,
analytical, and experimental methods proposed and investigated. Each class of
methods has its limitations and advantages. Automated techniques [16, 40] work
on realizations of algorithms (programs), as opposed to algorithms themselves.
From this point of view, their role in guiding algorithm development is limited –
since they are implementation based. Furthermore, automated techniques gen-
erally rely on parameterizing quanta of communication and computation, and
using or simulations (Monte Carlo, discrete event simulation). For this reason,
these methods have limited accuracy, or may themselves be computationally
expensive.

Experimental approaches [3, 13, 27, 28, 79] to scalability analysis typically
perform detailed quantification of the program instance and underlying plat-
form, in order to generate a prediction model. These models can be used to
predict performance beyond the observed envelope. As is the case with au-
tomated techniques, since these methods use realizations of algorithms, their
ability to guide the algorithm development process is limited. Furthermore,
because of the sensitive interaction between programs and underlying systems,
the prediction envelope of such methods is often limited.

Analytical methods for scalability analysis rely on asymptotic estimates of
basic metrics, such as parallel time and efficiency. Where available, such an-
alytical estimates hold the potential for accurate scalability predictions, while
providing guidance for algorithm and architecture development. For example,
scalability analysis predicts the necessary network bandwidth/compute power
in a system to efficiently scale Fast Fourier Transforms (FFTs) to large num-
bers of processors. The major drawback of these methods, of course, is that
analytical quantification of parallel performance is not always easy. Even for
simple algorithms, the presence of system (as opposed to programmer) con-
trolled performance optimizations (caches and associated replacement policies
are the simple examples) make accurate analytical quantification difficult.

In this chapter, we focus on analytical approaches to scalability analysis. Our
choice is motivated by the fact that in relatively early stages of hardware devel-
opment, such studies can effectively guide hardware design. Furthermore, we
believe that for many applications, parallel algorithms scaling to very large con-
figurations may not be the same as those that yield high efficiencies on smaller
configurations. For these desired predictive properties, analytical modeling is
critical.

68

There are a number of scaling scenarios, which may be suited to various ap-
plication scenarios. In a large class of applications, the available memory limits
the size of problem instance being solved. The question here is, given constraints
on memory size, how does an algorithm perform? In other applications, for ex-
ample, weather forecasting, there are definite deadlines on task completion. The
question here becomes one of, what is the largest problem one can solve, given
constraints on execution time, on a specific machine configuration. In yet other
applications, the emphasis may be on efficiency. Here, one asks the question,
what is the smallest problem instance I must solve on a machine so as to achieve
desired execution efficiency. Each of these scenarios is quantified by a different
scalability metric. We describe these metrics and their application to specific
algorithms.

The rest of this chapter is organized as follows: in Section 5.2, we describe
basic metrics of parallel performance, in Section 5.3, we describe various scala-
bility metrics and how they can be applied to emerging parallel platforms. In
Section 5.4, we discuss alternate parallel paradigms of task mapping for com-
posite algorithms and how our scalability analysis applies to these scenarios.

5.2 Metrics of Parallel Performance

Throughout this chapter, we refer to a single processing core as a processor.
Where we talk of a chip with multiple cores, we refer to it as a chip multipro-
cessor, or a multicore processor. We assume that a parallel processor (or ensem-
ble) consists of p identical processing cores. The cores are connected through
an interconnect. Exchanging a message of size m between cores incurs a time
of ts + twm. Here, ts corresponds to the network latency and tw the per-word
transfer time determined by the network bandwidth. The communication model
used here is a simplification, since it does not account for network congestion,
communication patterns, overlapped access, and interconnect topology, among
others. We define a parallel system as a combination of a parallel program and
a parallel machine. We assume that the serial time of execution of an algorithm
Ts is composed of W basic operations.

Perhaps the simplest and most intuitive metric of parallel performance is
the parallel runtime, Tp. This is the time elapsed between initiation of the
parallel program at the first processor to the completion of the program at the
last processor. Indeed, an analytical expression for parallel time captures all
the performance parameters of a parallel algorithm. The problem with parallel
runtime is that it does not account for the resources used to achieve the execution
time. Specifically, if one were to indicate that the parallel runtime of a program,
which took 10s on a serial processor, is 2 seconds, we would have no way of
knowing whether the parallel program (and associated algorithm) performs well
or not. The obvious question w.r.t. parallel time is, how much lower it is
compared to its serial counterpart. This speedup, S is defined as the ratio of
the serial time Ts and the parallel time Tp. Mathematically, S = Ts/Tp. For
the example above, the speedup is 10/2 = 5.

69

While we have a sense of how much faster our program is compared to its
serial counterpart, we still cannot estimate its performance, since we do not
know how many resources were consumed to achieve this speedup. Specifically,
if one were told that a parallel program achieved a speedup of 5, could we say
anything about the performance of the program? For this reason, the speedup
can be normalized with respect to the number of processors p to compute ef-
ficiency. Formally, efficiency E = S/p. In the example above, if the speedup
of 5 is achieved using 8 processors, the efficiency is 5/8 or 0.625 (or 62.5%). If
the same speedup is achieved using 16 processors, the corresponding efficiency
is 0.312 (or 31.2%). Clearly, the algorithm can be said to perform better in the
former case.

Efficiency, by itself, is not a complete indicator of parallel performance ei-
ther. A given problem can be solved using several possible serial algorithms,
which may be more or less amenable to parallel execution. For example, given
a sparse linear system, we can solve it using simple Jacobi iterations. These
are easily parallelizable and mostly involve near-neighbor communication (other
than global dot products). On the other hand, the same system can be solved us-
ing a more powerful solver such as the Generalized Minimum Residual method,
GMRES, see Yousef Saad, Iterative Methods for Sparse Linear Systems, second
edition, SIAM, 2003, with an approximate inverse preconditioner. This method
solves the problem much faster in the serial context, but is less amenable to par-
allelism, compared to the first algorithm. In such cases, one must be cautious
relying simply on efficiency as a metric for performance.

To account for these issues, vendors and users sometimes rely on total aggre-
gate FLOPS as a metric. Indeed, when we refer to a platform as being capable
of ten petaFLOPS, it is in the context of some program and input, or the
absolute peak performance, which may, or may not be achievable by any pro-
gram. The most popular choice of a benchmark in this context is the Linpack
benchmark. The Linpack benchmark has favorable data reuse and computa-
tion/communication characteristics, and therefore yields parallel performance
closer to peak for typical parallel platforms. However, this begs the obvious
question of what, if any, this implies for other applications that may not have
the same data reuse characteristics. Indeed, Linpack numbers, referring to dense
matrix operations are rarely indicative of machine performance on typical appli-
cations that have sparse kernels (PDE solvers), molecular dynamics type sparse
interaction potentials, access workloads of large-scale data analysis kernels, or
commercial server workloads. It is important to note that the oft-used sparse
kernels often yield as low as 5% to 10% of peak performance on conventional
processors because of limited data reuse.

In addition to the shortcomings mentioned above, basic metrics do not ex-
plicitly target scaling. Specifically, if the parallel time of program (algorithm)
A for solving a problem is lower than that of algorithm B for solving the same
problem, what does it say if the problem size is changed, the number of pro-
cessors is increased, or if any of the computation/ communication parameters
are varied. It turns out that a single sample point in the multidimensional
performance space of parallel programs says nothing about the performance at

70

other points. This provides strong motivation for the development of scalability
metrics.

5.3 Metrics for Scalability Analysis

We motivate scalability analysis through two examples, at two diverse ends of
the spectrum. The first example relates to emerging large-scale platforms, and
the second, to emerging scalable multicore desktop processors.

An important challenge to the parallel computing community currently is
to develop a core set of algorithms and applications that can utilize emerging
petascale computers. The number of cores in these platforms will be in the
range of 100,000, in an energy efficient configuration. A number of important
questions are posed in this context – (i) which, if any, of the current applications
and algorithms are likely to be able to scale to such configurations, (ii) what
fundamentally new algorithms will be required to scale to very large machine
configurations, (iii) what are realizable architectural features that will enhance
scaling characteristics of wide classes of algorithms, (iv) what are the memory
and I/O requirements of such platforms, and (v) how can time-critical applica-
tions, such as weather forecasting, effectively utilize these platforms. Scalability
analysis can answer many of these questions, while guiding algorithm and ar-
chitecture design.

At the other end of the spectrum, desktop software vendors are grappling
with questions of how to develop efficient software with meaningful develop-
ment and deployment cycles. Specifically, will software, ranging from operating
systems (Windows Vista, Linux, etc.) to desktop applications (word process-
ing, media applications) be able to use 64 cores or beyond, likely to become
available in high-end desktops and engineering workstations in a 5-year time-
frame. The difficulty associated with this is that such platforms do not exist
currently, therefore, one must design algorithms and software that can scale to
future platforms. Again, scalability analysis can guide algorithm and software
development in fundamental ways.

The general theme of these two motivating examples is that often, programs
are designed and tested for smaller problems on fewer processing elements. How-
ever, the real problems these programs are intended to solve are much larger,
and the machines contain larger number of processing elements. Whereas code
development is simplified by using scaled-down versions of the machine and the
problem, their performance and correctness is much more difficult to establish
based on scaled-down systems.

Why is performance extrapolation so difficult? Consider three parallel
algorithms for computing an n-point Fast Fourier Transform (FFT) on 64 pro-
cessing cores. Figure 5.1 illustrates speedup as the value of n is increased to
18K. Keeping the number of processing cores constant, at smaller values of n,
one would infer from observed speedups that binary exchange and 3-D transpose
algorithms are the best. However, as the problem is scaled up to 18 K points and

71

180001600014000120001000080006000400020000
0

5

10

15

20

25

30

35

40

45

Binary exchange
2-D transpose
3-D transpose

n

S

Figure 5.1: A comparison of the speedups obtained by the binary-exchange, 2-D
transpose and 3-D transpose algorithms on 64 cores with tc = 2ns, tw = 4ns,
ts = 25ns, and th = 2ns.

beyond, it is evident from Figure 5.1 that the 2-D transpose algorithm yields
best speedup [39].

Similar results can be shown relating to the variation in number of processing
cores as the problem size is held constant. Unfortunately, such parallel perfor-
mance traces are the norm as opposed to the exception, making performance
prediction based on limited observed data very difficult.

5.3.1 Scaling characteristics of parallel programs

The parallel runtime of a program, summed across all processing cores, (pTp),
consists of essential computation which would be performed by its serial counter-
part (Ts), and overhead incurred in parallelization (To). Note that we use To to
denote the total (or parallel) overhead summed across all processors. Formally,
we write this as:

pTp = Ts + To (5.1)

We also know that the efficiency of a parallel program can be written as:

E =
S

p
=

Ts

pTp

Using the expression for parallel overhead (Equation 5.1), we can rewrite this
expression as

E =
1

1 + To

Ts

. (5.2)

72

The total overhead function To is an increasing function of p [31, 32]. This
is because every program must contain some serial component. If this serial
component of the program takes time tserial, then during this time all the other
processing elements must be idle. This corresponds to a total overhead function
of (p − 1) × tserial. Therefore, the total overhead function To grows at least
linearly with p. Furthermore, due to communication, idling, and excess compu-
tation, this function may grow super-linearly in the number of processing cores.
Equation 5.2 gives us several interesting insights into the scaling of parallel pro-
grams. First, for a given problem size (i.e., the value of Ts remains constant),
as we increase the number of processing elements, To increases. In this scenario,
it is clear from Equation 5.2 that the overall efficiency of the parallel program
goes down. This characteristic of decreasing efficiency with increasing number
of processing cores for a given problem size is common to all parallel programs.
Often, in our quest for ever more powerful machines, this fundamental insight
is lost – namely that the same problem instances that we solve on todays com-
puters are unlikely to yield meaningful performance on emerging highly-parallel
platforms.

Let us investigate the effect of increasing the problem size keeping the num-
ber of processing cores constant. We know that the total overhead function To is
a function of both problem size Ts and the number of processing elements p. In
many cases, To grows sub-linearly with respect to Ts. In such cases, we can see
that efficiency increases if the problem size is increased keeping the number of
processing elements constant. Indeed, when demonstrating parallel performance
on large machine configurations, many researchers assume that the problem is
scaled in proportion to the number of processors. This notion of experimentally
scaling problem size to maintain constant computation per processor is referred
to as scaled speedup [41, 42, 43], and is discussed in Section 5.3.7. For such
algorithms, it should be possible to keep the efficiency fixed by increasing both
the size of the problem and the number of processing elements simultaneously.
This ability to maintain efficiency constant by simultaneously increasing the
number of processing cores and the size of the problem is essential to utilizing
scalable parallel platforms. Indeed, a number of parallel systems exhibit such
characteristics. We call such systems scalable parallel systems. The scalability of
a parallel system is a measure of its capacity to increase performance (speedup)
in proportion to the number of processing cores. It reflects a parallel system’s
ability to utilize increasing processing resources effectively.

5.3.2 The isoefficiency metric of scalability

We summarize our discussion in the section above in the following two observa-
tions:

1. For a given problem size, as we increase the number of processing cores,
the overall efficiency of the parallel system goes down. This phenomenon
is common to all parallel systems.

2. In many cases, the efficiency of a parallel system increases if the problem

73

(a) (b)

E

W

Fixed number of processors (p)Fixed problem size (W)

p

E

Figure 5.2: Variation of efficiency: (a) as the number of processing elements is
in creased for a given problem size; and (b) as the problem size is increased for
a given number of processing elements. The phenomenon illustrated in graph
(b) is not common to all parallel systems.

size is increased while keeping the number of processing cores constant.

These two phenomena are illustrated in Figure 5.2(a) and (b), respectively.
Following from these two observations, we define a scalable parallel system as
one in which the efficiency can be kept constant as the number of processing
elements is increased, provided that the problem size is also increased.

An important question that follows naturally is, what is the rate at which
the problem size must be increased in order to keep efficiency constant. This
rate is critical for a number of reasons – primarily, this rate determines the rate
at which the total memory in the system must be increased. If problem size is
linear in memory size, as is the case for a number of algorithms (applications),
and the rate of increase in problem size is super-linear, this implies that the total
memory in the parallel machine must increase super-linearly. This is a critical
observation. Conversely, if the increase in system memory is sublinear with
respect to the number of cores, one can trivially show that the parallel efficiency
will decline. The relation between problem size, memory size, and efficiency, is a
critical determinant of the scaling characteristics of parallel systems. A second
implication of increasing problem size is that a super-linear increase results in an
increasing (parallel) time to solution. For applications with constraints on time
to solution (a classic example is in short-term weather forecasting), this may
eventually limit growth in problem size. We discuss these three issues, namely,
increase in problem size to maintain efficiency, impact of memory constraints,
and impact of parallel solution time constraints separately.

For different parallel systems, the problem size must increase at different
rates in order to maintain a fixed efficiency as the number of processing elements
is increased. This rate is determined by the overheads incurred in parallelization.
A lower rate is more desirable than a higher growth rate in problem size. This
is because it allows us to extract good performance on smaller problems, and

74

consequently, improved performance on even larger problem instances. We now
investigate metrics for quantitatively determining the degree of scalability of a
parallel system. We start by formally defining the Problem Size.

Problem Size When analyzing parallel systems, we frequently encounter the
notion of the size of the problem being solved. Thus far, we have used the term
problem size informally, without giving a precise definition. A naive way to
express problem size is as a parameter of the input size; for instance, n in case
of a matrix operation involving n × n matrices. A drawback of this definition
is that the interpretation of problem size changes from one problem to another.
For example, doubling the input size results in an eight-fold increase in the
execution time for matrix multiplication and a four-fold increase for matrix
addition (assuming that the conventional Θ(n3) algorithm is the best matrix
multiplication algorithm, and disregarding more complicated algorithms with
better asymptotic complexities). Using memory size as a measure of problem
size has a similar drawback. In this case, the memory size associated with the
dense matrices is Θ(n2), which is also the time for, say, matrix addition and
matrix-vector multiplication, but not for matrix-matrix multiplication.

A consistent definition of the size or the magnitude of the problem should be
such that, regardless of the problem, doubling the problem size always means
performing twice the amount of computation. Therefore, we choose to express
problem size in terms of the total number of basic operations required to solve
the problem. By this definition, the problem size is Θ(n3) for n × n matrix
multiplication (assuming the conventional algorithm) and Θ(n2) for n×n matrix
addition. In order to keep it unique for a given problem, we define problem size
as the number of basic computation steps in the best sequential algorithm to
solve the problem on a single processing core. Since it is defined in terms of
sequential time complexity, problem size W is a function of the size of the input.

Without loss of generality, we often assume that it takes unit time to perform
one basic computation step of an algorithm. This assumption does not impact
the analysis of any parallel system because the other hardware-related constants,
such as message startup time, per-word transfer time, and per-hop time, can be
normalized with respect to the time taken by a basic computation step. With
this assumption, the problem size W is equal to the serial runtime Ts of the
fastest known algorithm to solve the problem on a sequential computer.

The isoefficiency function

Parallel execution time can be expressed as a function of problem size, overhead
function, and the number of processing elements. We can write parallel runtime
as:

Tp =
W + To(W, p)

p
(5.3)

75

The resulting expression for speedup is

S =
W

Tp

=
Wp

W + To(W, p)
. (5.4)

Finally, we write the expression for efficiency as

E =
S

p

=
W

W + To(W, p)

=
1

1 + To(W, p)/W
. (5.5)

In Equation 5.5, if the problem size is kept constant and p is increased, the
efficiency decreases because the total overhead To increases with p. If W is
increased keeping the number of processing elements fixed, then for scalable
parallel systems, the efficiency increases. This is because To grows slower than
Θ(W) for a fixed p. For these parallel systems, efficiency can be maintained at
a desired value (between 0 and 1) for increasing p, provided W is also increased.

For different parallel systems, W must be increased at different rates with
respect to p in order to maintain a fixed efficiency. For instance, in some cases,
W might need to grow as an exponential function of p to keep the efficiency
from dropping as p increases. Such parallel systems are poorly scalable. The
reason is that on these parallel systems it is difficult to obtain good speedups
for a large number of processing elements unless the problem size is enormous.
On the other hand, if W needs to grow only linearly with respect to p, then the
parallel system is highly scalable. That is because it can easily deliver speedups
proportional to the number of processing elements for reasonable problem sizes.

For scalable parallel systems, efficiency can be maintained at a fixed value
(between 0 and 1) if the ratio To/W in Equation 5.5 is maintained at a constant
value. For a desired value E of efficiency,

E =
1

1 + To(W, p)/W
,

To(W, p)

W
=

1 − E

E
,

W =
E

1 − E
To(W, p). (5.6)

Let K = E/(1−E) be a constant depending on the efficiency to be maintained.
Since To is a function of W and p, Equation 5.6 can be rewritten as

W = KTo(W, p). (5.7)

76

From Equation 5.7, the problem size W can usually be obtained as a func-
tion of p by algebraic manipulations. This function dictates the growth rate of
W required to keep the efficiency fixed as p increases. We call this function the
isoefficiency function of the parallel system. The isoefficiency function deter-
mines the ease with which a parallel system can maintain constant efficiency,
and hence achieve speedups increasing in proportion to the number of process-
ing elements. A small isoefficiency function means that small increments in the
problem size are sufficient for the efficient utilization of an increasing number
of processing elements, indicating that the parallel system is highly scalable.
However, a large isoefficiency function indicates a poorly scalable parallel sys-
tem. The isoefficiency function does not exist for unscalable parallel systems,
because in such systems the efficiency cannot be kept at any constant value as
p increases, no matter how fast the problem size is increased.

Isoefficiency function of computing an n-point FFT. One parallel for-
mulation of FFT, called the Binary Exchange Algorithm, computes an n-point
FFT on a p processor machine (with O(p), or full bisection bandwidth) in time:

Tp = tc
n

p
log n + ts log p + tw

n

p
log p

Recall here that tc refers to unit computation, ts to the message startup time,
and tw to the per-word message transfer time. Recall also that the problem
size, W , for an n-point FFT is given by:

W = n log n

The efficiency, E, of this computation can be written as:

E =
Ts

pTp
=

tcn logn

tc
n
p log n + ts log p + tw

n
p log p

Through simple algebraic manipulations, we can rewrite the above expression
as:

tsp log p

tcn logn
+

twlogp

tc log n
=

1 − E

E

If efficiency E is held constant, the right hand side is constant. The equality
can be forced in the asymptotic sense by forcing each of the terms in the left
hand side to be constant, individually. For the first term, we have,

tsp log p

tcn log n
=

1

K
,

for constant K. This implies that the corresponding isoefficiency term is given
by W ≈ n logn ≈ p log p. For the second term, we have,

tw log p

tc log n
=

1

K
,

77

log n = K
tw
tc

log p,

n = pKtw/tc ,

W = n log n = K
tw
tc

pKtw/tc .

In addition to these two isoefficiency terms resulting from communication
overhead, since the Binary Exchange algorithm can only use p = n processors,
there is an isoefficiency term resulting from concurrency. This term is given by
W = n log n = p log p.

The combined isoefficiency from the three terms is the dominant of the three.
If Ktw < tc (which happens when we have very high bandwidth across the
processing cores), the concurrency and startup terms dominate, and we have an
isoefficiency of p log p. Otherwise, the isoefficiency is exponential, and given by
W ≈ pKtw/tc . This observation demonstrates the power of isoefficiency analysis
in quantifying both scalability of the algorithm, as well as desirable features
of the underlying platform. Specifically, if we would like to use the Binary
Exchange algorithm for FFT on large platforms, the balance of the machine
should be such that Ktw < tc (i.e., it must have sufficient per-processor bisection
bandwidth).

The isoefficiency function [38] captures, in a single expression, the charac-
teristics of a parallel algorithm as well as the parallel platform on which it is
implemented. Isoefficiency analysis enables us to predict performance on larger
number of processing cores from observed performance on a smaller number of
cores. Detailed isoefficiency analysis can also be used to study the behavior of
a parallel system with respect to changes in hardware parameters such as the
speed of processing cores and communication channels. In many cases, isoef-
ficiency analysis can be used even for parallel algorithms for which we cannot
derive a value of parallel runtime, by directly relating the total overhead to the
problem size and number of processors [39].

5.3.3 Cost-optimality and the isoefficiency function

A parallel system is cost-optimal if the product of the number of processing
cores and the parallel execution time is proportional to the execution time of
the fastest known sequential algorithm on a single processing element. In other
words, a parallel system is cost-optimal if and only if

pTp = Θ(W). (5.8)

Substituting the expression for Tp from the right-hand side of Equation 5.3, we
get the following:

W + To(W, p) = Θ(W)

To(W, p) = O(W) (5.9)

W = Ω(To(W, p)) (5.10)

78

Equations 5.9 and 5.10 suggest that a parallel system is cost-optimal if and
only if its overhead function does not asymptotically exceed the problem size.
This is very similar to the condition specified by Equation 5.7 for maintaining a
fixed efficiency while increasing the number of processing elements in a parallel
system. If Equation 5.7 yields an isoefficiency function f(p), then it follows
from Equation 5.10 that the relation W = Ω(f(p)) must be satisfied to ensure
the cost-optimality of a parallel system as it is scaled up.

5.3.4 A lower bound on the isoefficiency function

We discussed earlier that a smaller isoefficiency function indicates higher scal-
ability. Accordingly, an ideally-scalable parallel system must have the lowest
possible isoefficiency function. For a problem consisting of W units of work,
no more than W processing elements can be used cost-optimally; additional
processing cores will be idle. If the problem size grows at a rate slower than
Θ(p) as the number of processing elements increases, the number of process-
ing cores will eventually exceed W . Even for an ideal parallel system with no
communication, or other overhead, the efficiency will drop because processing
elements added beyond p = W will be idle. Thus, asymptotically, the problem
size must increase at least as fast as Θ(p) to maintain fixed efficiency; hence,
Ω(p) is the asymptotic lower bound on the isoefficiency function. It follows that
the isoefficiency function of an ideally scalable parallel system is Θ(p).

This trivial lower bound implies that the problem size must grow at-least lin-
early, or, consequently, the problem size per processor must be at-least constant.
For problems where memory size and problem size, W are linearly related, the
memory per processing core must increase linearly to maintain constant effi-
ciency.

5.3.5 The degree of Concurrency and the Isoefficiency

Function

A lower bound of Ω(p) is imposed on the isoefficiency function of a parallel
system by the number of operations that can be performed concurrently. The
maximum number of tasks that can be executed simultaneously at any time in a
parallel algorithm is called its degree of concurrency. The degree of concurrency
is a measure of the number of operations that an algorithm can perform in
parallel for a problem of size W ; it is independent of the parallel architecture.
If C(W) is the degree of concurrency of a parallel algorithm, then for a problem
of size W , no more than C(W) processing elements can be employed effectively.

Effect of concurrency on isoefficiency function. Consider solving a sys-
tem of n equations in n variables by using Gaussian elimination. The total
amount of computation is Θ(n3). But the n variables must be eliminated one
after the other (assuming pivoting), and eliminating each variable requires Θ(n2)
computations. Thus, at most Θ(n2) processing elements can be kept busy at
any time. Since W = Θ(n3) for this problem, the degree of concurrency C(W)

79

is Θ(W 2/3) and at most Θ(W 2/3) processing elements can be used efficiently.
On the other hand, given p processing cores, the problem size should be at least
Ω(p3/2) to use them all. Thus, the isoefficiency function of this computation
due to concurrency is Θ(p3/2).

The isoefficiency function due to concurrency is optimal (that is, Θ(p)) only
if the degree of concurrency of the parallel algorithm is Θ(W). If the degree of
concurrency of an algorithm is less than Θ(W), then the isoefficiency function
due to concurrency is worse (that is, greater) than Θ(p). In such cases, the
overall isoefficiency function of a parallel system is given by the maximum of the
isoefficiency functions due to concurrency, communication, and other overheads.

5.3.6 Scaling properties and parallel benchmarks

At this point, we can further investigate why dense linear algebra kernels are
frequently used as benchmarks for parallel systems. Consider the example of
matrix multiplication – the first thing to note is that it has significant data reuse,
even in the serial sense (Θ(n3) operations on Θ(n2) data). The parallel runtime
of a commonly used matrix multiplication algorithm (Cannon’s algorithm) is
given by:

Tp =
n3

p
+ 2

√
pts + 2tw

n2

√
p

The corresponding isoefficiency is given by W = p1.5. The favorable memory to
FLOPS ratio of matrix multiplication, combined with the relatively favorable
isoefficiency function makes this an ideal parallel benchmark. Specifically, if
M ≈ n2 represents the memory requirement, since W ≈ n3, we have W ≈ M1.5.
Substituting in the expression for isoefficiency, we have, W ≈ M 1.5 ≈ p1.5.
From this, we can see that we can keep efficiency constant with M ≈ p. In
other words, the increase in problem size to hold efficiency constant requires
only a linear increase in total memory, or constant memory per processor.

The relatively benign memory requirement and their high processor utiliza-
tion makes dense kernels, such as matrix-matrix multiplication and linear direct
solvers ideal benchmarks for large-scale parallel platforms. It is important to
recognize the favorable characteristics of these benchmarks, since a number of
real applications, for example, sparse solvers and molecular dynamics methods,
do not have significant data reuse and the underlying computation is linear in
memory requirement.

5.3.7 Other scalability analysis metrics

We have alluded to constraints on runtime and memory as being important
determinants of scalability. These constraints can be incorporated directly into
scalability metrics. One such metric, called Scaled Speedup, increases the prob-
lem size linearly with the number of processing cores [41, 42, 43, 74, 80]. If the
scaled-speedup curve is close to linear with respect to the number of processing
cores, then the parallel system is considered scalable. This metric is related

80

to isoefficiency if the parallel algorithm under consideration has linear or near-
linear isoefficiency function. In this case the scaled-speedup metric provides
results very close to those of isoefficiency analysis, and the scaled-speedup is
linear or near-linear with respect to the number of processing cores. For par-
allel systems with much worse isoefficiencies, the results provided by the two
metrics may be quite different. In this case, the scaled-speedup versus number
of processing cores curve is sublinear.

Two generalized notions of scaled speedup have been investigated. They
differ in the methods by which the problem size is scaled up with the number
of processing elements. In one method, the size of the problem is increased to
fill the available memory on the parallel computer. The assumption here is that
aggregate memory of the system increases with the number of processing cores.
In the other method, the size of the problem grows with p subject to a bound
on parallel execution time. We illustrate these using an example:

Memory and time-constrained scaled speedup for matrix-vector prod-
ucts. The serial runtime of multiplying a matrix of dimension n × n with a
vector is n2 (with normalized unit execution time). The corresponding parallel
runtime using a simple parallel algorithm is given by:

Tp =
n2

p
+ log p + n

and the speedup S is given by:

S =
n2

n2

p + log p + n
(5.11)

The total memory requirement of the algorithm is Θ(n2). Let us consider the
two cases of problem scaling. In the case of memory constrained scaling, we
assume that the memory of the parallel system grows linearly with the number
of processing cores, i.e., m = Θ(p). This is a reasonable assumption for most
current parallel platforms. Since m = Θ(n2), we have n2 = c × p, for some
constant c. Therefore, the scaled speedup S ′ is given by:

S′ =
c × p

c×p
p + log p +

√
c × p

or
S′ =

c1p

c2 + c3 log p + c4
√

p
.

In the limiting case, S′ = O(
√

p).
In the case of time constrained scaling, we have Tp = O(n2/p), and since this

is constrained to be constant, we have n2 = O(p). We notice that this case is
identical to the memory constrained case. This happened because the memory
and runtime of the algorithm are asymptotically identical.

81

Memory and time-constrained scaled speedup for matrix-matrix
products. The serial runtime of multiplying two matrices of dimension n×n
is n3. The corresponding parallel runtime using a simple parallel algorithm is
given by:

Tp =
n3

p
+ log p +

n2

√
p

and the speedup S is given by:

S =
n3

n3

p + log p + n2√
p

(5.12)

The total memory requirement of the algorithm is Θ(n2). Let us consider the
two cases of problem scaling. In the case of memory constrained scaling, as
before, we assume that the memory of the parallel system grows linearly with
the number of processing elements, i.e., m = Θ(p). Since m = Θ(n2), we have
n2 = c × p, for some constant c. Therefore, the scaled speedup S ′ is given by:

S′ =
(c × p)1.5

(c×p)1.5

p + log p + c×p√
p

= O(p)

In the case of time constrained scaling, we have Tp = O(n3/p). Since this
is constrained to be constant, n3 = O(p), or n3 = c × p (for some constant c).
Therefore, the time-constrained speedup S ′′ is given by:

S′′ =
c × p

c×p
p + log p + (c×p)2/3

√
p

= O(p5/6)

This example illustrates that memory-constrained scaling yields linear speedup,
whereas time-constrained speedup yields sublinear speedup in the case of matrix
multiplication.

Serial Fraction f . The experimentally determined serial fraction f can be
used to quantify the performance of a parallel system on a fixed-size problem.
Consider a case when the serial runtime of a computation can be divided into a
totally parallel and a totally serial component, i.e.,

W = Tser + Tpar.

Here, Tser and Tpar correspond to totally serial and totally parallel components.
From this, we can write:

Tp = Tser +
Tpar

p
.

Here, we have assumed that all of the other parallel overheads such as excess
computation and communication are captured in the serial component Tser.
From these equations, it follows that:

Tp = Tser +
W − Tser

p
(5.13)

82

The serial fraction f of a parallel program is defined as:

f =
Tser

W
.

Therefore, from Equation 5.13, we have:

Tp = f × W +
W − f × W

p

Tp

W
= f +

1 − f

p

Since S = W/Tp, we have
1

S
= f +

1 − f

p
.

Solving for f , we get:

f =
1/S − 1/p

1 − 1/p
. (5.14)

It is easy to see that smaller values of f are better since they result in higher
efficiencies. If f increases with the number of processing elements, then it is
an indicator of rising communication overhead, and thus an indicator of poor
scalability.

Serial component of the matrix-vector product. From Equations 5.14
and 5.11, we have

f =

n2

p +log p+n

n2

1 − 1/p
(5.15)

Simplifying the above expression, we get

f =
p log p + np

n2
× 1

p − 1

f ≈ log p + n

n2

It is useful to note that the denominator of this equation is the serial runtime
of the algorithm and the numerator corresponds to the overhead in parallel
execution.

A comprehensive discussion of various scalability and performance measures
can be found in the survey by Kumar and Gupta [50]. While over ten years old,
the results cited in this survey and their applications are particularly relevant
now, as scalable parallel platforms are finally being realized.

5.4 Heterogeneous Composition of Applications

Many applications are composed of multiple steps, with differing scaling char-
acteristics. For example, in commonly used molecular dynamics techniques, the

83

potentials on particles are evaluated as sums of near and far-field potentials.
Near field potentials consider particles in a localized neighborhood, typically
resulting in a linear algorithmic complexity. Far-field potentials, along with
periodic boundary conditions are evaluated using Ewald summations, which
involve computation of an FFT. Short-range potentials can be evaluated in a
scalable manner on most platforms, since they have favorable communication to
computation characteristics (communication is required only for particles close
to the periphery of a processing core’s sub-domain). FFTs, on the other hand
have more exacting requirement on network bandwidth, as demonstrated earlier
in this chapter.

Traditional parallel paradigms attempt to distribute computation associated
with both phases across all processing cores. However, since FFTs generally
scale worse than the short-range potentials, it is possible to use a heterogeneous
partition of the platform – with one partition working on short-range potentials,
and the other on computing the FFT. The results from the two are combined
to determine total potential (and force) at each particle.

Scalability analysis is a critical tool in understanding and developing het-
erogeneous parallel formulations. The tradeoffs of sizes of heterogeneous par-
titions, algorithm scaling, and serial complexities are critical determinants of
overall performance.

84

Chapter 6

Summary and Conclusion

We presented an effective parallel algorithm, SPIKE, for solving banded linear
systems. Comparisons against the corresponding solvers in ScaLapack prove
that our algorithm used as a direct solver is faster than ScaLapack, and if one is
satisfied with reasonable relative residuals, SPIKE can be used as a very effec-
tive preconditioner of an iterative scheme such as BiCGstab. We demonstrated
the effectiveness of SPIKE on varying numbers of processors with increasing
bandwidth, as well as its favorable scalability on a large number of processors
on the IBM-SP. Clearly, in deciding on the original partitioning of the system,
a balance must be achieved between the computational cost of solving the sub-
problems and the communication overhead. For parallel architectures in which
the communication costs are relatively high, the optimal implementation of
the SPIKE algorithm will favor fewer partitions to reduce the communication
overhead. On the other hand, on parallel architectures with relatively fast inter-
connects and in which each CPU has vector processing capabilities, the SPIKE
algorithm can be further modified to capitalize on trade-offs between parallel
and vector processing.

Three members of the SPIKE family of schemes have been described: (i) the
Recursive SPIKE, (ii) the Truncated SPIKE and (iii) the SPIKE “on-the-fly”.
Each of these schemes uses a different solution strategy of the reduced system.
The resulting reduced system can be solved either explicitly using a parallel
recursive method, approximately, or implicitly using iterative methods. The
Recursive and Truncated versions of the algorithm for handling both diagonally
and non-diagonally dominant systems, have been implemented and compared
with the corresponding solvers in ScaLapack for systems that are dense within
the band. The speed improvements realized by SPIKE over ScaLapack are
significant. The favorable scalability of SPIKE has also been demonstrated on
the Intel-Xeon cluster. For banded systems that are sparse within the band,
SPIKE “on-the-fly” with two-levels of parallelism exhibits good scalability.

We should note that the SPIKE environment is specifically well suited for
recently introduced computational fluid dynamics techniques such as those in
[75], [76], or [73]. In [75] the finite element grid is partitioned (statically or

85

dynamically) into “iterative” or “direct” groups, depending on which part of the
grid poses a challenge to iterative schemes. Also, the two-level SPIKE scheme
is ideally suited for the multi-scale solution technique presented in [76]. Finally,
any member of the SPIKE family can be used for handling those linear systems
that arise in the “solid-extension mesh moving technique”, in [73], in regions
of the grid with very small elements which are at risk of being “entangled” if
classical iterative schemes (with “black-box” preconditioners) converge slowly.

We have also demonstrated that banded preconditioners can be attractive
alternatives to ILU-type preconditioners, which might be desirable particularly
for parallel solvers. Banded preconditioners offer high FLOP counts and con-
currency in addition to desirable convergence properties for a range of problems.
We identified the central role of matrix reordering in the performance of banded
preconditioners. We proposed the use of weighted spectral ordering for this pur-
pose. We demonstrated that, weighted bandwidth reduction based on spectral
reordering, used in conjunction with efficient banded solvers is capable of sig-
nificantly better performance than even optimized versions of ILU for a variety
of problems, both in terms of convergence and time-to-solution.

We have also developed a parallel hybrid algorithm for the solution of banded
linear systems that result from domain decomposition. The conditions that
must be satisfied to guarantee that the balance system is symmetric positive
definite or nonsingular are also stated. Our hybrid algorithm can be viewed as
solving a large system of linear equations on one hand, and performing the LU-
factorization of several smaller independent linear systems once, but applying
the forward and backward sweeps several times, on the other. We describe how
the banded system can be “torn” into overlapped smaller systems that can be
solved independently under certain constraints, giving rise to a much smaller
balance system that is not formed explicitly. Further, we showed how this sys-
tem can be solved via a modified preconditioned Krylov subspace method with
a preconditioner that takes advantage of the decay property of the inverse of
banded systems. Finally, numerical experiments show that our proposed algo-
rithm outperforms sequential LAPACK, parallel ScaLapack, preconditioned CG
and BiCGStab for symmetric and non-symmetric banded systems, respectively.

Finally, we have demonstrated the power of scalability analysis, and more
generally, analytical modeling. It is not always possible to do such modeling
under tight bounds. Analytical modeling must account for finite resources and
parameters such as line sizes, replacement policies, and other related intricacies.
Clearly such analysis, if performed precisely, becomes specific to problem in-
stance and platform, and does not generalize. While aforementioned limitations
apply specifically to small-to-moderate sized systems, larger aggregates (teras-
cale and beyond) are generally programmed through explicit message transfers.
This is accomplished either through MPI-style messaging, or explicit (put-get)
or implicit (partitioned global arrays) one-way primitives. In such cases, even
with loose bounds on performance of individual multicore processors, we can
establish tight bounds on scalability of the complete parallel system. Analytical
modeling and scalability analysis can be reliably applied to such systems as well.

86

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J.
Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK User’s Guide. Society for Industrial and Apl. Math., Philadel-
phia, PA, third edition, (1999).

[2] P. Arbenz, A. Cleary, J. Dongarra and M. Hegland A Comparison of Parallel
Solvers for Diagonally Dominant and General Narrow-Banded Linear Systems.
Parallel and Distributed Computing Practices Vol. 2, pp. 385-400, (1999).

[3] Brian Armstrong, Hansang Bae, Rudolf Eigenmann, Faisal Saied, Mo-
hamed Sayeed, and Yili Zheng. Hpc benchmarking and performance evalua-
tion with realistic applications. In Proceedings of Benchmarking Workshop,
2006.

[4] S. T. Barnard, A. Pothen, and H. Simon, A spectral algorithm for
envelope reduction of sparse matrices, Numerical Linear Algebra with Ap-
plications, 2 (1995), pp. 317–334.

[5] R. Barrett, et al., Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, SIAM, Philadelphia, PA, 1994.

[6] M. Benzi, D. B. Szyld, and A. van Duin, Orderings for incomplete
factorization preconditioning of nonsymmetric problems, SIAM Journal on
Scientific Computing, 20 (1999), pp. 1652–1670.

[7] M. Benzi, J. C. Haws, and M. Tuma, Preconditioning highly indefinite
and nonsymmetric matrices, SIAM J. Sci. Comput., 22 (2000), pp. 1333–
1353.

[8] M. Benzi, G. Golub and J. Liensen, Numerical Solution of Saddle Point
Problems Acta Numerica, (2005), pp. 1-137.

[9] M. Berry, K. Gallivan, W. Harrod, W. Jalby, S. Lo, U. Meier, B. Philippe
and A. H. Sameh. Parallel Algorithms on the CEDAR System . In: CON-
PAR 86, Lecture Notes in Computer Science , W. Handler et. al., editors,
Springer-Verlag, pp. 25-39, 1986.

87

[10] Michael Berry and Ahmed Sameh. Multiprocessor Schemes for Solving
Block Tridiagonal Linear Systems . International Journal of Supercomputer
Applications , Vol. 2, No. 3, pp. 37-57, 1988.

[11] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,

I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,

K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK: a linear al-
gebra library for message-passing computers, in Proceedings of the Eighth
SIAM Conference on Parallel Processing for Scientific Computing (Min-
neapolis, MN, 1997), Philadelphia, PA, USA, 1997, Society for Industrial
and Applied Mathematics, p. 15 (electronic).

[12] L.S Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R.C. Whaley. ScaLAPACK User’s Guide. Society for Industrial and
Apl. Math., Philadelphia, PA, (1997).

[13] Shirley Browne, Jack Dongarra, and Kevin London. Review of performance
analysis tools for MPI parallel programs. NHSE Review, 1998.

[14] P. K. Chan, M. D. F. Schlag, and J. Zien, Spectral k-way ratio-cut
partitioning and clustering, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 13 (1994), pp. 1088–96.

[15] D. J. Kuck, S. C. Chen and A. H. Sameh, Practical parallel band
triangular system solvers, ACM Transactions on Mathematical Software, 4
(1978), pp. 270–277.

[16] Nilesh Choudhury, Yogesh Mehta, Terry L. Wilmarth, Eric J. Bohm, and
Laxmikant V. Kale. Scaling an optimistic parallel simulation of large-scale
interconnection networks. In WSC ’05: Proceedings of the 37th conference
on Winter simulation, pages 591–600. Winter Simulation Conference, 2005.

[17] E. Chow and Y. Saad, Experimental study of ILU preconditioners for
indefinite matrices, Journal of Computational and Applied Mathematics,
86 (1997), pp. 387–414.

[18] A. Cleary and J. Dongarra. Implemantation in ScaLAPACK of Divide-and-
Conquer Algorithms for Banded and Tridiagonal Linear Systems. University of
Tennessee Computer Science Technical Report, UT-CS-97-358, (1997).

[19] J. M. Conroy, Parallel Algorithms for the Solution of Narrow Banded Sys-
tems, Applied Numerical Mathematics, 5 (1989), pp. 409-421.

[20] E. Cuthill and J. McKee, Reducing the Bandwidth of Sparse Symmetric
Matrices, In Proceedings of the 1969 24th National Conf., (1969), pp. 157-
172.

[21] T. Davis, The University of Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices/.

88

http://www.cise.u.edu/research/sparse/matrices/

[22] S. Demko, W. F. Moss and P. W. Smith. Decay Rates for Inverses of
Band Matrices. Mathematics of Computation, Vol. 43, No. 168, pp. 491-
499 (1984).

[23] J. J. Dongarra and A. H. Sameh, On Some Parallel Banded System Solvers,
Parallel Computing, 1 (1984), pp. 223-235.

[24] J. J. Dongarra and S. L. Johnson, Solving Banded Systems on a Parallel
Processor, Parallel Computing, 5 (1988), pp. 219246.

[25] I. S. Duff, On algorithms for obtaining a maximum transversal, ACM
Trans. Math. Softw., 7 (1981), pp. 315–330.

[26] I. S. Duff and J. Koster, The design and use of algorithms for per-
muting large entries to the diagonal of sparse matrices, SIAM Journal on
Matrix Analysis and Applications, 20 (1999), pp. 889–901.

pp. 889–901.

[27] Rudolf Eigenmann (Editor). Performance Evaluation and Benchmarking
with Realistic Applications. MIT Press, Cambrige, MA, 2001.

[28] T. Fahringer and S. Pllana. Performance prophet: A performance modeling
and prediction tool for parallel and distributed programs. Technical Report
2005-08, AURORA Technical Report, 2005.

[29] M. Fiedler, Algebraic Connectivity of Graphs, Czechoslovak Mathematical
Journal, 23 (1973), pp. 298-305.

[30] M. Fiedler, A Property of Eigenvectors of Nonnegative Symmetric Matrices
and its Applications to Graph Theory, Czechoslovak Mathematical Journal,
25 (1975), pp. 619-633.

[31] Horace P. Flatt and Ken Kennedy. Performance of parallel processors.
Parallel Computing, 12:1–20, 1989.

[32] Horace P. Flatt. Further applications of the overhead model for parallel sys-
tems. Technical Report G320-3540, IBM Corporation, Palo Alto Scientific
Center, Palo Alto, CA, 1990.

[33] K. Gallivan, E. Gallopoulos and A. Sameh. Cedar: An Experiment in Par-
allel Computing, Computer Mathematics and its Applications, Vol. 1, No.
1, pp. 77-98, 1994.

[34] A. George, Numerical Experiments Using Dissection Methods to solve n
by n Grid Problems, SIAM Journal on Numerical Analysis, 14 (1977), pp.
161-179.

[35] J. R. Gilbert and S. Toledo, An assessment of incomplete-LU pre-
conditioners for nonsymmetric linear systems, Informatica (Slovenia), 24
(2000).

89

[36] G. H. Golub and C. F. Van Loan, Matrix Computations, Third Edition,
The John Hopkins University Press, 1996.

[37] G. Golub, A. Sameh and V. Sarin, A Parallel Balance Scheme for Banded
Linear Systems, Numerical Linear Algebra with Appl., 8 (2001), pp. 297-
316.

[38] Ananth Grama, Anshul Gupta, and Vipin Kumar. Isoefficiency function:
A scalability metric for parallel algorithms and architectures. IEEE Par-
allel and Distributed Technology, Special Issue on Parallel and Distributed
Systems: From Theory to Practice, 1 (3):12–21, 1993.

[39] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Intro-
duction to Parallel Computing. Addison Wesley, 2003.

[40] D.A. Grove and P.D. Coddington. A performance modeling system for
message-passing parallel programs. Technical Report DHPC-105, Depart-
ment of Computer Science, Adelaide University, Adelaide, SA 5005, 2001.

[41] John L. Gustafson, Gary R. Montry, and Robert E. Benner. Development
of parallel methods for a 1024-processor hypercube. SIAM Journal on
Scientific and Statistical Computing, 9(4):609–638, 1988.

[42] John L. Gustafson. Reevaluating Amdahl’s law. Communications of the
ACM, 31(5):532–533, 1988.

[43] John L. Gustafson. The consequences of fixed time performance measure-
ment. In Proceedings of the 25th Hawaii International Conference on Sys-
tem Sciences: Volume III, pages 113–124, 1992.

[44] B. Hendrickson and R. Leland, An improved spectral graph partition-
ing algorithm for mapping parallel computations, SIAM J. Sci. Comput.,
16 (1995), pp. 452–469.

[45] HSL, A collection of Fortran codes for large-scale scientific computation,
2004. See http://www.cse.scitech.ac.uk/nag/hsl/.

[46] Y. Hu and J. Scott, HSL MC73: a fast multilevel Fiedler and profile
reduction code, Technical Report RAL-TR-2003-036, 2003.

[47] S. L. Johnson, Solving Narrow Banded Systems on Ensemble Architectures,
ACM Transactions on Mathematical Software, 11 (1985), pp. 271-288.

[48] R. Kechroud, A. Soulaimani, and Y. Saad, Preconditionning tech-
niques for the solution of the helmholtz equation by the finite element
method., in ICCSA (2), V. Kumar, M. L. Gavrilova, C. J. K. Tan, and
P. L’Ecuyer, eds., vol. 2668 of Lecture Notes in Computer Science, Springer,
2003, pp. 847–858.

[49] N. P. Kruyt, A conjugate gradient method for the spectral partitioning of
graphs, Parallel Computing, 22 (1997), pp. 1493–1502.

90

http://www.cse.scitech.ac.uk/nag/hsl/

[50] Vipin Kumar and Anshul Gupta. Analyzing scalability of parallel algo-
rithms and architectures. Journal of Parallel and Distributed Computing,
22(3):379–391, 1994. Also available as Technical Report TR 91-18, De-
partment of Computer Science Department, University of Minnesota, Min-
neapolis, MN.

[51] D. H. Lawrie and A. H. Sameh, The computation and communication
complexity of a parallel banded system solver, ACM Trans. Math. Softw.,
10 (1984), pp. 185–195.

[52] X. S. Li and J. W. Demmel, SuperLU DIST: A Scalable Distributed-Memory
Sparse Direct Solver for Unsymmetric Linear Systems. ACM Trans. Mathe-
matical Software, Vol. 29, No. 2, pp. 110-140 (2003).

[53] W. Liu and A. H. Sherman, Comparative Analysis of the Cuthill-McKee
and the Reverse Cuthill-McKee Ordering Algorithms for Sparse Matrices,
SIAM Journal on Numerical Analysis, 13 (1976), pp. 198-213.

[54] G. Lou, Parallel Methods for Solving Linear Systems via Overlapping De-
composition M.S. Thesis, University of Illinois - Urbana Champagne, 1989.

[55] U. Meier, A Parallel Partition Method for Solving Banded Systems of Lin-
ear Equations, Parallel Computing, 2 (1985), pp. 33-43.

[56] P.R. Amestoy, I. S. Duff, J.-Y L’Excellent and K. Koster, A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling. A SIAM
Journal on Matrix Analysis and Applications, Vol. 23, No. 21, pp. 15-49
(2001).

[57] M. Ng, Fast iterative methods for symmetric sinc-Galerkin systems, IMA
J Numer Anal, 19 (1999), pp. 357–373.

[58] K. Gartner and O. Schenk, PARDISO: The current state and algorithmic goals
for the future. Proceedings of the Workshop on State-of-the-Art in Scientific
Computing, PARA’04, (2004).

[59] E. Polizzi and A. Sameh, A parallel hybrid banded system solver: the SPIKE
algorithm, Parallel Computing, 32 (2006), pp. 177-194.

[60] E. Polizzi, A. Sameh, SPIKE: A Parallel Environment for Solving Banded
Linear Systems, Computers and Fluids, 36 (2007), pp. 113-120.

[61] M. S. Reeves, D. C. Chatfield, and D. G. Truhlar, Preconditioned
complex generalized minimal residual algorithm for dense algebraic varia-
tional equations in quantum reactive scattering, The Journal of Chemical
Physics, 99 (1993), pp. 2739–2751.

[62] J. K. Reid and J. A. Scott, Implementing hager’s exchange methods for
matrix profile reduction, ACM Trans. Math. Softw., 28 (2002), pp. 377–391.

91

[63] Y. Saad, SPARSKIT: A basic tool kit for sparse matrix computations,
Tech. Rep. 90-20, NASA Ames Research Center, Moffett Field, CA, 1990.

[64] , Iterative Methods for Sparse Linear Systems, Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2003.

[65] A. H. Sameh. Numerical Parallel Algorithms–A Survey . In: High Speed
Computer and Algorithm Organization , D. Kuck, D. Lawrie and A. Sameh,
editors, Academic Press, pp. 207-228, 1977.

[66] A. H. Sameh and D. J. Kuck. Parallel Direct Linear System Solvers–A
Survey . IMACS (AICA)-GI-Symp. on Parallel Computers–Parallel Math-
ematics , pp. 25-30, March, 1977.

[67] A. H. Sameh and D. J. Kuck. On Stable Parallel Linear System Solvers .
Journal of the ACM, Vol. 25, pp. 81-91, 1978.

[68] A. H. Sameh. On Two Numerical Algorithms for Multiprocessors. Proc. of
NATO Adv. Res. Workshop on High-Speed Comp. (Series F: Computer and
Systems Sciences, Vol. 7) , Springer-Verlag, pp. 311-328, 1983.

[69] A. H. Sameh. A Fast Poisson Solver on Multiprocessors . In: Elliptic Prob-
lem Solvers II . Academic Press, pp. 175-186, 1984.

[70] A. Sameh. Parallel Linear System Solvers . Proc. of the Conf. on Vector
and Parallel Processors for Scientific Computation , May 27-29, 1985.

[71] A. Sameh, and V. Sarin. Hybrid Parallel Linear Solvers, International Jour-
nal of Computational Fluid Dynamics, Vol 12, pp. 213-223, 1999.

[72] D. A. Spielman and S. Teng, Spectral Partitioning Works: Planar Graphs
and Finite Element Meshes, Lin. Algebra and Appl., 421 (2007), pp. 284-
305.

[73] K. Stein, T.E. Tezduyar and R. Benney, Automatic mesh update with the
solid-extension mesh moving technique. Computer Methods in Applied Me-
chanics and Engineering, Vol. 193, pp. 2019-2032 (2004).

[74] X.-H. Sun and L. M. Ni. Scalable problems and memory-bounded speedup.
Journal of Parallel and Distributed Computing, 19:27–37, September 1993.

[75] T.E. Tezduyar and S. Sathe, Enhanced-approximation linear solution tech-
nique (EALST). Computer Methods in Applied Mechanics and Engineering,
Vol. 193, pp. 2033-2049 (2004).

[76] T.E. Tezduyar and S. Sathe, Enhanced-discretization successive update
method (EDSUM). International Journal for Numerical Methods in Fluids,
Vol. 47, pp. 633-654 (2005).

92

[77] Z. Tong and A. Sameh, On optimal banded preconditioners for the five-
point laplacian, SIAM Journal on Matrix Analysis and Applications, 21
(2000), pp. 477–480.

[78] H. A. van der Vorst, Bi-cgstab: a fast and smoothly converging variant
of bi-cg for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat.
Comput., 13 (1992), pp. 631–644.

[79] Vikram S. Adve, Rajive Bagrodia, James C. Browne, Ewa Deelman, Aditya
Dubeb, Elias N. Houstis, John R. Rice, Rizos Sakellariou, David Sundaram-
Stukel, Patricia T. Teller, and Mary K. Vernon. POEMS: End-to-end per-
formance design of large parallel adaptive computational systems. Software
Engineering, 26(11):1027–1048, 2000.

[80] Patrick H. Worley. Limits on parallelism in the numerical solution of linear
PDEs. SIAM Journal on Scientific and Statistical Computing, 12:1–35,
January 1991.

[81] S. J. Wright, Parallel Algorithms for Banded Linear Systems, SIAM Journal
of Scientific and Statistical Computing, 12 (1991), pp. 824-842.

[82] J. Zhang, On preconditioning Schur complement and Schur complement
preconditioning, Elect. Trans. Numer. Anal., 10 (2000), pp. 115–130.

93

